THE GENERALIZED SIMPLEX METHOD FOR MINIMIZING A LINEAR FORM UNDER LINEAR INEQUALITY RESTRAINTS

[1]  The Product Form for the Inverse in the Simplex Method , 2010 .

[2]  A. J. Hoffman Cycling in the Simplex Algorithm , 2003 .

[3]  P. K. Gupta,et al.  Linear programming and theory of games , 1979 .

[4]  Walter W Garvin,et al.  Introduction to Linear Programming , 2018, Linear Programming and Resource Allocation Modeling.

[5]  The number of solutions of certain types of equations in a finite field. , 1955 .

[6]  F. Haimo Power-type endomorphisms of some class 2 groups , 1955 .

[7]  A. Davis,et al.  A characterization of complete lattices , 1955 .

[8]  S. Karlin On the renewal equation. , 1955 .

[9]  Some determinants involving Bernoulli and Euler numbers of higher order , 1955 .

[10]  R. Phillips,et al.  The adjoint semi-group , 1955 .

[11]  Note on the multiplication formulas for the Jacobi elliptic functions. , 1955 .

[12]  L. Jackson On generalized subharmonic functions , 1955 .

[13]  A. Tarski A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .

[14]  G. Dantzig,et al.  Notes on Linear Programming: Part 1. The Generalized Simplex Method for Minimizing a Linear Form under Linear Inequality Restraints , 1954 .

[15]  John S. Chipman Computational Problems in Linear Programming , 1953 .

[16]  Alex Orden Solution of systems of linear inequalities on a digital computer , 1952, ACM '52.

[17]  A. Charnes Optimality and Degeneracy in Linear Programming , 1952 .

[18]  T. Motzkin Two Consequences of the Transposition Theorem on Linear Inequalities , 1951 .