Lymphatic vessels arise from specialized angioblasts within a venous niche

[1]  P. Ingham,et al.  Divergence of zebrafish and mouse lymphatic cell fate specification pathways , 2014, Development.

[2]  G. Oliver,et al.  Development of the mammalian lymphatic vasculature. , 2014, The Journal of clinical investigation.

[3]  Tyson N. Kim,et al.  Molecular identification of venous progenitors in the dorsal aorta reveals an aortic origin for the cardinal vein in mammals , 2014, Development.

[4]  O. Cleaver,et al.  Bone Morphogenetic Protein 2 Signaling Negatively Modulates Lymphatic Development in Vertebrate Embryos , 2014, Circulation research.

[5]  Prashant Mali,et al.  Self-organized vascular networks from human pluripotent stem cells in a synthetic matrix , 2013, Proceedings of the National Academy of Sciences.

[6]  M. Beltrame,et al.  Sox18 Genetically Interacts With VegfC to Regulate Lymphangiogenesis in Zebrafish , 2013, Arteriosclerosis, thrombosis, and vascular biology.

[7]  S. Sumanas,et al.  Arterial and venous progenitors of the major axial vessels originate at distinct locations. , 2013, Developmental cell.

[8]  A. Eichmann,et al.  Endothelial ERK signaling controls lymphatic fate specification. , 2013, The Journal of clinical investigation.

[9]  L. Appelbaum,et al.  Zebrafish as a Model for Monocarboxyl Transporter 8-Deficiency* , 2012, The Journal of Biological Chemistry.

[10]  N. Ferrara,et al.  S1P1 inhibits sprouting angiogenesis during vascular development , 2012, Development.

[11]  T. Hashimshony,et al.  CEL-Seq: single-cell RNA-Seq by multiplexed linear amplification. , 2012, Cell reports.

[12]  R. Nusse,et al.  Wnt5a can both activate and repress Wnt/β-catenin signaling during mouse embryonic development. , 2012, Developmental biology.

[13]  Kathryn E Crosier,et al.  lyve1 expression reveals novel lymphatic vessels and new mechanisms for lymphatic vessel development in zebrafish , 2012, Development.

[14]  L. Lum,et al.  In vivo Wnt signaling tracing through a transgenic biosensor fish reveals novel activity domains. , 2012, Developmental biology.

[15]  Itai Yanai,et al.  Developmental milestones punctuate gene expression in the Caenorhabditis embryo. , 2012, Developmental cell.

[16]  Tom T. Chen,et al.  ApoB-containing lipoproteins regulate angiogenesis by modulating expression of VEGF receptor 1 , 2012, Nature Medicine.

[17]  M. Affolter,et al.  Distinct Cellular Mechanisms of Blood Vessel Fusion in the Zebrafish Embryo , 2011, Current Biology.

[18]  K. Alitalo,et al.  The lymphatic vasculature in disease , 2011, Nature Medicine.

[19]  Dean Y. Li,et al.  Motoneurons are essential for vascular pathfinding , 2011, Development.

[20]  R. Jagasia,et al.  Prospero-related homeobox 1 gene (Prox1) is regulated by canonical Wnt signaling and has a stage-specific role in adult hippocampal neurogenesis , 2011, Proceedings of the National Academy of Sciences.

[21]  Akihiro Urasaki,et al.  Arteries provide essential guidance cues for lymphatic endothelial cells in the zebrafish trunk , 2010, Development.

[22]  M. Studer,et al.  The nuclear hormone receptor Coup-TFII is required for the initiation and early maintenance of Prox1 expression in lymphatic endothelial cells. , 2010, Genes & development.

[23]  Jan Huisken,et al.  Arterial-Venous Segregation by Selective Cell Sprouting: An Alternative Mode of Blood Vessel Formation , 2009, Science.

[24]  H. Aburatani,et al.  COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis , 2009, Proceedings of the National Academy of Sciences.

[25]  Jeroen Bussmann,et al.  ccbe1 is required for embryonic lymphangiogenesis and venous sprouting , 2009, Nature Genetics.

[26]  Lawrence Lum,et al.  Small molecule-mediated disruption of Wnt-dependent signaling in tissue regeneration and cancer , 2008, Nature chemical biology.

[27]  F. Orsenigo,et al.  Sox18 induces development of the lymphatic vasculature in mice , 2008, Nature.

[28]  Yi Zhang,et al.  A role for planar cell polarity signaling in angiogenesis , 2008, Angiogenesis.

[29]  Martin Vingron,et al.  Ontologizer 2.0 - a multifunctional tool for GO term enrichment analysis and data exploration , 2008, Bioinform..

[30]  E. Dejana,et al.  Sox18 and Sox7 play redundant roles in vascular development. , 2008, Blood.

[31]  Julio D Amigo,et al.  Gateway compatible vectors for analysis of gene function in the zebrafish , 2007, Developmental dynamics : an official publication of the American Association of Anatomists.

[32]  M. Tsai,et al.  Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature. , 2007, Genes & development.

[33]  Molly K Nyholm,et al.  The zebrafish zic2a-zic5 gene pair acts downstream of canonical Wnt signaling to control cell proliferation in the developing tectum , 2007, Development.

[34]  R. Moon,et al.  Distinct Wnt signaling pathways have opposing roles in appendage regeneration , 2006, Development.

[35]  S. Fisher,et al.  Evaluating the biological relevance of putative enhancers using Tol2 transposon-mediated transgenesis in zebrafish , 2006, Nature Protocols.

[36]  H. Wolburg,et al.  Development of the Zebrafish Lymphatic System Requires Vegfc Signaling , 2006, Current Biology.

[37]  J. Hitomi,et al.  Live imaging of lymphatic development in the zebrafish , 2006, Nature Medicine.

[38]  R. Nusse,et al.  Purified Wnt5a Protein Activates or Inhibits β-Catenin–TCF Signaling Depending on Receptor Context , 2006, PLoS biology.

[39]  D. Stainier,et al.  Cellular and molecular analyses of vascular tube and lumen formation in zebrafish , 2005, Development.

[40]  S. Ekker,et al.  Wnt5 signaling in vertebrate pancreas development , 2005, BMC Biology.

[41]  Kris Vleminckx,et al.  A genetic Xenopus laevis tadpole model to study lymphangiogenesis , 2005, Nature Medicine.

[42]  R. Dorsky,et al.  Expression pattern of zebrafish tcf7 suggests unexplored domains of Wnt/β‐catenin activity , 2005, Developmental dynamics : an official publication of the American Association of Anatomists.

[43]  M. Levin A novel immunohistochemical method for evaluation of antibody specificity and detection of labile targets in biological tissue. , 2004, Journal of biochemical and biophysical methods.

[44]  B. Weinstein,et al.  Angiogenic network formation in the developing vertebrate trunk , 2003, Development.

[45]  D. Kimelman,et al.  One-Eyed Pinhead and Spadetail are essential for heart and somite formation , 2002, Nature Cell Biology.

[46]  M. Detmar,et al.  An essential role for Prox1 in the induction of the lymphatic endothelial cell phenotype , 2002, The EMBO journal.

[47]  R. Moon,et al.  A transgenic Lef1/beta-catenin-dependent reporter is expressed in spatially restricted domains throughout zebrafish development. , 2002, Developmental biology.

[48]  Z. Lele,et al.  Morpholino phenocopies of the swirl, snailhouse, somitabun, minifin, silberblick, and pipetail mutations , 2001, Genesis.

[49]  Stephen W. Wilson,et al.  A mutation in the Gsk3-binding domain of zebrafish Masterblind/Axin1 leads to a fate transformation of telencephalon and eyes to diencephalon. , 2001, Genes & development.

[50]  P. Carmeliet,et al.  Molecular mechanisms of blood vessel growth. , 2001, Cardiovascular research.

[51]  Jun Yamashita,et al.  Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors , 2000, Nature.

[52]  T. Hirano,et al.  Cooperative roles of Bozozok/Dharma and Nodal-related proteins in the formation of the dorsal organizer in zebrafish , 2000, Mechanisms of Development.

[53]  D. Stainier,et al.  casanova plays an early and essential role in endoderm formation in zebrafish. , 1999, Developmental biology.

[54]  Akira Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK‐3β and β‐catenin and promotes GSK‐3β‐dependent phosphorylation of β‐catenin , 1998 .

[55]  F. Sabin On the origin of the lymphatic system from the veins and the development of the lymph hearts and thoracic duct in the pig , 1902 .

[56]  J. Partanen,et al.  Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins , 2004, Nature Immunology.

[57]  H. Stern,et al.  Analysis of the cell cycle in zebrafish embryos. , 2004, Methods in cell biology.

[58]  E. Cuppen,et al.  The Wnt/beta-catenin pathway regulates cardiac valve formation. , 2003, Nature.

[59]  Lothar Schweigerer,et al.  Lymphangioblasts in embryonic lymphangiogenesis. , 2003, Lymphatic research and biology.

[60]  A. Kikuchi,et al.  Axin, a negative regulator of the Wnt signaling pathway, forms a complex with GSK-3beta and beta-catenin and promotes GSK-3beta-dependent phosphorylation of beta-catenin. , 1998, The EMBO journal.

[61]  C. McClure,et al.  The anatomy and development of the jugular lymph sacs in the domestic cat (Felis domestica) , 1910 .