The optimal convergence of the h–p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains

In the framework of the Jacobi-weighted Besov spaces, we analyze the lower and upper bounds of errors in the h–p version of boundary element solutions on quasiuniform meshes for elliptic problems on polygons. Both lower bound and upper bound are optimal in h and p, and they are of the same order. The optimal convergence of the h–p version of boundary element method with quasiuniform meshes is proved, which includes the optimal rates for h version with quasiuniform meshes and the p version with quasiuniform degrees as two special cases.

[1]  Guo Ben-yu,et al.  Jacobi interpolation approximations and their applications to singular differential equations , 2001 .

[2]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[3]  E. P. Stephan,et al.  The $h-p$ version of the boundary element method on polygonal domains with quasiuniform meshes , 1991 .

[4]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[5]  Ivo Babuska,et al.  Direct and Inverse Approximation Theorems for the p-Version of the Finite Element Method in the Framework of Weighted Besov Spaces. Part I: Approximability of Functions in the Weighted Besov Spaces , 2001, SIAM J. Numer. Anal..

[6]  Ivo Babuska,et al.  Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions , 2000, Numerische Mathematik.

[7]  Guo Ben-Yu,et al.  Gegenbauer Approximation in Certain Hilbert Spaces and Its Applications to Singular Differential Equations , 1999 .

[8]  I. Babuska,et al.  The h , p and h-p versions of the finite element methods in 1 dimension . Part III. The adaptive h-p version. , 1986 .

[9]  Ivo Babuška,et al.  DIRECT AND INVERSE APPROXIMATION THEOREMS FOR THE p-VERSION OF THE FINITE ELEMENT METHOD IN THE FRAMEWORK OF WEIGHTED BESOV SPACES PART II: OPTIMAL RATE OF CONVERGENCE OF THE p-VERSION FINITE ELEMENT SOLUTIONS , 2002 .

[10]  E. Stephan,et al.  The hp-Version of the Boundary Element Method on Polygons , 1996 .

[11]  Weiwei Sun,et al.  The Optimal Convergence of the h-p Version of the Finite Element Method with Quasi-Uniform Meshes , 2007, SIAM J. Numer. Anal..

[12]  Ivo Babuška,et al.  The optimal convergence rate of the p-version of the finite element method , 1987 .

[13]  Ernst P. Stephan,et al.  On the Convergence of the p-Version of the Boundary Element Galerkin Method. , 1989 .

[14]  M. Costabel,et al.  The normal dervative of the double layer potential on polygons and galerkin approximation , 1983 .

[15]  I. Babuska,et al.  The h , p and h-p versions of the finite element method in 1 dimension. Part II. The error analysis of the h and h-p versions , 1986 .

[16]  I. Babuska,et al.  Theh,p andh-p versions of the finite element method in 1 dimension , 1986 .

[17]  Norbert Heuer,et al.  The optimal rate of convergence of the p-version of the boundary element method in two dimensions , 2004, Numerische Mathematik.

[18]  Ernst P. Stephan,et al.  Schwarz iterations for the efficient solution of screen problems with boundary elements , 2005, Computing.