Poisson Matrix Recovery and Completion

We extend the theory of low-rank matrix recovery and completion to the case when Poisson observations for a linear combination or a subset of the entries of a matrix are available, which arises in various applications with count data. We consider the usual matrix recovery formulation through maximum likelihood with proper constraints on the matrix M of size d1-by-d2, and establish theoretical upper and lower bounds on the recovery error. Our bounds for matrix completion are nearly optimal up to a factor on the order of O(log(d1d2)). These bounds are obtained by combining techniques for recovering sparse vectors with compressed measurements in Poisson noise, those for analyzing low-rank matrices, as well as those for one-bit matrix completion [Davenport , “1-bit Matrix Completion, Information and Inference,” Information and Inference, vol. 3, no. 3, pp. 189-223, Sep. 2014] (although these two problems are different in nature). The adaptation requires new techniques exploiting properties of the Poisson likelihood function and tackling the difficulties posed by the locally sub-Gaussian characteristic of the Poisson distribution. Our results highlight a few important distinctions of the Poisson case compared to the prior work including having to impose a minimum signal-to-noise requirement on each observed entry and a gap in the upper and lower bounds. We also develop a set of efficient iterative algorithms and demonstrate their good performance on synthetic examples and real data.

[1]  Xin Jiang,et al.  Minimax Optimal Rates for Poisson Inverse Problems With Physical Constraints , 2014, IEEE Transactions on Information Theory.

[2]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[3]  Ewout van den Berg,et al.  1-Bit Matrix Completion , 2012, ArXiv.

[4]  A. Tsybakov,et al.  Estimation of high-dimensional low-rank matrices , 2009, 0912.5338.

[5]  Klaus-Robert Müller,et al.  Efficient and Accurate Lp-Norm Multiple Kernel Learning , 2009, NIPS.

[6]  Volkan Cevher,et al.  A proximal Newton framework for composite minimization: Graph learning without Cholesky decompositions and matrix inversions , 2013, ICML.

[7]  Roummel F. Marcia,et al.  Compressed Sensing Performance Bounds Under Poisson Noise , 2009, IEEE Transactions on Signal Processing.

[8]  Joel A. Tropp,et al.  Robust Computation of Linear Models by Convex Relaxation , 2012, Foundations of Computational Mathematics.

[9]  Martin J. Wainwright,et al.  Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.

[10]  Jarvis D. Haupt,et al.  Noisy Matrix Completion Under Sparse Factor Models , 2014, IEEE Transactions on Information Theory.

[11]  Andrea Montanari,et al.  Matrix completion from a few entries , 2009, 2009 IEEE International Symposium on Information Theory.

[12]  D. Pollard A User's Guide to Measure Theoretic Probability by David Pollard , 2001 .

[13]  Yvonne Freeh,et al.  Optical Imaging And Spectroscopy , 2016 .

[14]  Martin J. Wainwright,et al.  Restricted strong convexity and weighted matrix completion: Optimal bounds with noise , 2010, J. Mach. Learn. Res..

[15]  Emmanuel J. Candès,et al.  The Power of Convex Relaxation: Near-Optimal Matrix Completion , 2009, IEEE Transactions on Information Theory.

[16]  Y. Plan Compressed Sensing, Sparse Approximation, and Low-Rank Matrix Estimation , 2011 .

[17]  Prateek Jain,et al.  Low-rank matrix completion using alternating minimization , 2012, STOC '13.

[18]  Hadi Fanaee-T,et al.  Event labeling combining ensemble detectors and background knowledge , 2014, Progress in Artificial Intelligence.

[19]  Joel A. Tropp,et al.  Robust computation of linear models, or How to find a needle in a haystack , 2012, ArXiv.

[20]  Jieping Ye,et al.  An accelerated gradient method for trace norm minimization , 2009, ICML '09.

[21]  Emmanuel J. Candès,et al.  A Singular Value Thresholding Algorithm for Matrix Completion , 2008, SIAM J. Optim..

[22]  Volkan Cevher,et al.  Composite self-concordant minimization , 2013, J. Mach. Learn. Res..

[23]  Arvind Ganesh,et al.  Fast Convex Optimization Algorithms for Exact Recovery of a Corrupted Low-Rank Matrix , 2009 .

[24]  Emmanuel J. Candès,et al.  Matrix Completion With Noise , 2009, Proceedings of the IEEE.

[25]  Bin Yu Assouad, Fano, and Le Cam , 1997 .

[26]  Robert Tibshirani,et al.  Spectral Regularization Algorithms for Learning Large Incomplete Matrices , 2010, J. Mach. Learn. Res..

[27]  Yang Cao,et al.  Low-rank matrix recovery in poisson noise , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[28]  José Mario Martínez,et al.  Nonmonotone Spectral Projected Gradient Methods on Convex Sets , 1999, SIAM J. Optim..

[29]  Emmanuel J. Candès,et al.  How well can we estimate a sparse vector? , 2011, ArXiv.

[30]  Pablo A. Parrilo,et al.  Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization , 2007, SIAM Rev..

[31]  D. Balding,et al.  Structured Regularizers for High-Dimensional Problems : Statistical and Computational Issues , 2014 .

[32]  Jarvis D. Haupt,et al.  Estimation error guarantees for Poisson denoising with sparse and structured dictionary models , 2014, 2014 IEEE International Symposium on Information Theory.

[33]  Martin J. Wainwright,et al.  Fast global convergence rates of gradient methods for high-dimensional statistical recovery , 2010, NIPS.

[34]  S. Frick,et al.  Compressed Sensing , 2014, Computer Vision, A Reference Guide.

[35]  Benjamin Recht,et al.  A Simpler Approach to Matrix Completion , 2009, J. Mach. Learn. Res..

[36]  Haipeng Shen,et al.  Analysis of call centre arrival data using singular value decomposition , 2005 .

[37]  Rebecca Willett,et al.  Change-Point Detection for High-Dimensional Time Series With Missing Data , 2012, IEEE Journal of Selected Topics in Signal Processing.

[38]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[39]  A. Robert Calderbank,et al.  Performance Bounds for Expander-Based Compressed Sensing in Poisson Noise , 2010, IEEE Transactions on Signal Processing.

[40]  Olgica Milenkovic,et al.  SET: An algorithm for consistent matrix completion , 2009, 2010 IEEE International Conference on Acoustics, Speech and Signal Processing.

[41]  Andrea Montanari,et al.  Matrix Completion from Noisy Entries , 2009, J. Mach. Learn. Res..

[42]  M. Talagrand,et al.  Probability in Banach Spaces: Isoperimetry and Processes , 1991 .

[43]  Lieven Vandenberghe,et al.  Interior-Point Method for Nuclear Norm Approximation with Application to System Identification , 2009, SIAM J. Matrix Anal. Appl..

[44]  Jean Lafond,et al.  Low Rank Matrix Completion with Exponential Family Noise , 2015, COLT.

[45]  Emmanuel J. Candès,et al.  Exact Matrix Completion via Convex Optimization , 2008, Found. Comput. Math..

[46]  Jarvis D. Haupt,et al.  Error bounds for maximum likelihood matrix completion under sparse factor models , 2014, 2014 IEEE Global Conference on Signal and Information Processing (GlobalSIP).

[47]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[48]  Gonzalo Mateos,et al.  Inference of Poisson count processes using low-rank tensor data , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[49]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[50]  Emmanuel J. Candès,et al.  Tight Oracle Inequalities for Low-Rank Matrix Recovery From a Minimal Number of Noisy Random Measurements , 2011, IEEE Transactions on Information Theory.