In this paper we use perturbation theory to study the spectral properties and energy decay of two-dimensional acoustic flow (cf. [J.T. Beale, Indiana Univ. Math. J., 25 (1976), pp.895--917], [P.M. Morse and K.U. Ingard, Theoretical Acoustics, McGraw-Hill, New York, 1968]):$\phi_{tt}-c^2\Delta \phi=0$ in $\Omega\times(0,\infty)$, $m\delta_{tt}+d\delta_t+k\delta=-\rho\phi_t$ and $\phi_x=\delta_t$ on $\Gamma_0\times(0,\infty)$, $\frac{\partial\phi}{\partial\nu}=0$ on $\Gamma_1\times(0,\infty)$ with initial data $\phi(0)=\phi_0,\ \phi_t(0)=\phi_1$ in $\Omega$ and $\delta(0)=\delta_0,\ \delta_t(0)=\delta_1$ on $\Gamma_0$, where $\Omega=(0,1)\times (0,1)$, $\Gamma_0=\{(1,y); \0<y <1\}$, $\Gamma_1=\partial\Omega\setminus\Gamma_0$, and $\nu$ is the external normal direction on the boundary. Locations of eigenvalues of the infinitesimal generator of semigroup associated with the above system are estimated. A certain "Fourier" expansion is obtained. That the energy decays to zero and like t-1 (even like $t^{-\beta}...
[1]
F. Smithies.
Linear Operators
,
2019,
Nature.
[2]
Irena Lasiecka,et al.
The Strong Stability of a Semigroup Arising from a Coupled Hyperbolic/Parabolic System
,
1998
.
[3]
Enrique Zuazua,et al.
Boundary Controllability of a Linear Hybrid SystemArising in the Control of Noise
,
1997
.
[4]
J. Hale.
Asymptotic Behavior of Dissipative Systems
,
1988
.
[5]
L. Markus,et al.
Stabilization of a hybrid system of elasticity by feedback boundary damping
,
1988
.
[6]
J. Lions,et al.
Sur Une Classe D’Espaces D’Interpolation
,
1964
.
[7]
E. Zuazua,et al.
Propriétés qualitatives d'un modèle hybride bi-dimensionnel intervenant dans le contrôle du bruit
,
1994
.
[8]
Tosio Kato.
Perturbation theory for linear operators
,
1966
.