“The Capacity of the Relay Channel”: Solution to Cover’s Problem in the Gaussian Case

Consider a memoryless relay channel, where the relay is connected to the destination with an isolated bit pipe of capacity <inline-formula> <tex-math notation="LaTeX">$C_{0}$ </tex-math></inline-formula>. Let <inline-formula> <tex-math notation="LaTeX">$C(C_{0})$ </tex-math></inline-formula> denote the capacity of this channel as a function of <inline-formula> <tex-math notation="LaTeX">$C_{0}$ </tex-math></inline-formula>. What is the critical value of <inline-formula> <tex-math notation="LaTeX">$C_{0}$ </tex-math></inline-formula>, such that <inline-formula> <tex-math notation="LaTeX">$C(C_{0})$ </tex-math></inline-formula> first equals <inline-formula> <tex-math notation="LaTeX">$C(\infty )$ </tex-math></inline-formula>? This is a long-standing open problem posed by Cover and named “The Capacity of the Relay Channel,” in <italic>Open Problems in Communication and Computation</italic>, Springer-Verlag, 1987. In this paper, we answer this question in the Gaussian case and show that <inline-formula> <tex-math notation="LaTeX">$C(C_{0})$ </tex-math></inline-formula> cannot equal to <inline-formula> <tex-math notation="LaTeX">$C(\infty )$ </tex-math></inline-formula> unless <inline-formula> <tex-math notation="LaTeX">$C_{0}=\infty $ </tex-math></inline-formula>, regardless of the SNR of the Gaussian channels. This result follows as a corollary to a new upper bound we develop on the capacity of this channel. Instead of “single-letterizing” expressions involving information measures in a high-dimensional space as is typically done in converse results in information theory, our proof directly quantifies the tension between the pertinent <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-letter forms. This is done by translating the information tension problem to a problem in high-dimensional geometry. As an intermediate result, we develop an extension of the classical isoperimetric inequality on a high-dimensional sphere, which can be of interest in its own right.

[1]  C. McDiarmid Concentration , 1862, The Dental register.

[2]  J. Lindenstrauss,et al.  Handbook of geometry of Banach spaces , 2001 .

[3]  Thomas M. Cover,et al.  Elements of information theory (2. ed.) , 2006 .

[4]  S. Li Concise Formulas for the Area and Volume of a Hyperspherical Cap , 2011 .

[5]  M. Talagrand Transportation cost for Gaussian and other product measures , 1996 .

[6]  Abbas El Gamal,et al.  Capacity theorems for the relay channel , 1979, IEEE Trans. Inf. Theory.

[7]  Ayfer Özgür,et al.  The geometry of the relay channel , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[8]  Ayfer Özgür,et al.  A solution to cover's problem for the binary symmetric relay channel: Geometry of sets on the hamming sphere , 2017, 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[9]  Ayfer Özgür,et al.  Cover's open problem: “The Capacity of the Relay Channel” , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[10]  Thomas M. Cover,et al.  Network Information Theory , 2001 .

[11]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[12]  Igal Sason,et al.  Concentration of Measure Inequalities in Information Theory, Communications, and Coding , 2012, Found. Trends Commun. Inf. Theory.

[13]  Jiri Matousek,et al.  Lectures on discrete geometry , 2002, Graduate texts in mathematics.

[14]  Ayfer Özgür,et al.  Improving on the Cut-Set Bound via Geometric Analysis of Typical Sets , 2016, IEEE Transactions on Information Theory.

[15]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[16]  P. Levy,et al.  Problèmes concrets d'analyse fonctionnelle , 1952 .

[17]  Ayfer Özgür,et al.  Improving on the cut-set bound for general primitive relay channels , 2016, 2016 IEEE International Symposium on Information Theory (ISIT).

[18]  B. A. Taylor,et al.  Spherical rearrangements, subharmonic functions, and $\ast$-functions in $n$-space , 1976 .

[19]  Joy A. Thomas,et al.  Feedback can at most double Gaussian multiple access channel capacity , 1987, IEEE Trans. Inf. Theory.

[20]  Zhen Zhang,et al.  Partial converse for a relay channel , 1988, IEEE Trans. Inf. Theory.

[21]  C.E. Shannon,et al.  Communication in the Presence of Noise , 1949, Proceedings of the IRE.

[22]  T. Cover The Capacity of the Relay Channel , 1987 .

[23]  A. Burchard,et al.  A Short Course on Rearrangement Inequalities , 2009 .

[24]  Ayfer Özgür,et al.  Cut-set bound is loose for Gaussian relay networks , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[25]  Thomas M. Cover,et al.  Open Problems in Communication and Computation , 2011, Springer New York.

[26]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[27]  K. Marton Bounding $\bar{d}$-distance by informational divergence: a method to prove measure concentration , 1996 .