Retrieval of phase relation and emission profile of quantum cascade laser frequency combs

Recently, the field of optical frequency combs experienced a major development of new sources. They are generally much smaller in size (on the scale of millimetres) and can extend frequency comb emission to other spectral regions, in particular towards the mid- and far-infrared regions. Unlike classical pulsed frequency combs, their mode-locking mechanism relies on four-wave-mixing nonlinear processes, yielding a non-trivial phase relation among the modes and an uncommon emission time profile. Here, by combining dual-comb multi-heterodyne detection with Fourier-transform analysis, we show how to simultaneously acquire and monitor over a wide range of timescales the phase pattern of a generic (unknown) frequency comb. The technique is applied to characterize both a mid-infrared and a terahertz quantum cascade laser frequency comb, conclusively proving the high degree of coherence and the remarkable long-term stability of these sources. Moreover, the technique allows also the reconstruction of the electric field, intensity profile and instantaneous frequency of the emission.The combined technique of dual-comb multi-heterodyne detection and Fourier-transform analysis allows simultaneous acquisition and monitoring of the phase pattern of a generic frequency comb demonstrating the high degree of coherence of the emission of two quantum cascade laser frequency combs.

[1]  Federico Capasso,et al.  Mode-locked pulses from mid-infrared quantum cascade lasers. , 2009, Optics express.

[2]  I. Coddington,et al.  Dual-comb spectroscopy. , 2016, Optica.

[3]  Mattias Beck,et al.  Octave-spanning semiconductor laser , 2014, Nature Photonics.

[4]  Scott A. Diddams,et al.  The evolving optical frequency comb , 2010 .

[5]  Erich Gornik,et al.  Quantum Cascade Lasers , 2003 .

[6]  Jerome Faist,et al.  Dual-comb spectroscopy based on quantum-cascade-laser frequency combs , 2014, Nature Communications.

[7]  Federico Capasso,et al.  Stable mode-locked pulses from mid-infrared semiconductor lasers , 2009, 0903.4385.

[8]  Daniel Hofstetter,et al.  Wavelength tuning and thermal dynamics of continuous-wave mid-infrared distributed feedback quantum cascade lasers , 2013 .

[9]  A. Weiner,et al.  Spectral line-by-line pulse shaping of an on-chip microresonator frequency comb , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[10]  G. Giusfredi,et al.  Mid-infrared frequency comb for broadband high precision and sensitivity molecular spectroscopy. , 2014, Optics letters.

[11]  Rick Trebino,et al.  Frequency-resolved optical gating with the use of second-harmonic generation , 1994 .

[12]  M. Beck,et al.  Intensity autocorrelation measurements of frequency combs in the terahertz range , 2017, 1702.03831.

[13]  Simone Borri,et al.  Frequency stability characterization of a quantum cascade laser frequency comb , 2016 .

[14]  Mattias Beck,et al.  Evidence of linear chirp in mid-infrared quantum cascade lasers , 2018, Optica.

[15]  David A. Ritchie,et al.  Frequency-Comb-Assisted Terahertz Quantum Cascade Laser Spectroscopy , 2014 .

[16]  Scott A. Diddams,et al.  The evolving optical frequency comb [Invited] , 2010 .

[17]  H. Beere,et al.  Phase-locking to a free-space terahertz comb for metrological-grade terahertz lasers , 2012, Nature Communications.

[18]  Hall,et al.  Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis , 2000, Science.

[19]  Jérôme Tignon,et al.  Electric field sampling of modelocked pulses from a quantum cascade laser. , 2013, Optics express.

[20]  Jérôme Faist,et al.  Quantum cascade laser combs: effects of modulation and dispersion. , 2015, Optics express.

[21]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[22]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[23]  Carlo Sirtori,et al.  Coherent sampling of active mode-locked terahertz quantum cascade lasers and frequency synthesis , 2011 .

[24]  Pascal Del'Haye,et al.  Self-injection locking and phase-locked states in microresonator-based optical frequency combs. , 2013, Physical review letters.

[25]  D. Revin,et al.  Active mode locking of quantum cascade lasers in an external ring cavity , 2015, Nature communications.

[26]  Knight,et al.  Optical frequency synthesizer for precision spectroscopy , 2000, Physical review letters.

[27]  Qing Hu,et al.  Time domain modeling of terahertz quantum cascade lasers for frequency comb generation. , 2016, Optics express.

[28]  Fritz Keilmann,et al.  Time-domain mid-infrared frequency-comb spectrometer. , 2004, Optics letters.

[29]  R. Blanchard,et al.  External ring-cavity quantum cascade lasers , 2013 .

[30]  Jerome Faist,et al.  Intrinsic linewidth of quantum cascade laser frequency combs , 2015, 1506.06262.

[31]  Mattias Beck,et al.  Short pulse generation and mode control of broadband terahertz quantum cascade lasers , 2016, 1605.09528.

[32]  Ming Yan,et al.  A phase-stable dual-comb interferometer , 2018, Nature Communications.

[33]  Yang Yang,et al.  Evaluating the coherence and time-domain profile of quantum cascade laser frequency combs. , 2015, Optics express.

[34]  M. Gorodetsky,et al.  Temporal solitons in optical microresonators , 2012, Nature Photonics.

[35]  Mattias Beck,et al.  Quantum Cascade Laser Frequency Combs , 2015, 1510.09075.

[36]  I. Galli,et al.  Shaping the spectrum of a down-converted mid-infrared frequency comb , 2017 .

[37]  T. Hänsch,et al.  Optical frequency metrology , 2002, Nature.

[38]  J. Faist,et al.  Quantum Cascade Laser , 1994, Science.

[39]  Juliette Mangeney,et al.  Short Terahertz Pulse Generation from a Dispersion Compensated Modelocked Semiconductor Laser , 2017 .

[40]  Peter Friedli,et al.  Four-wave mixing in a quantum cascade laser amplifier , 2013 .

[41]  Juliette Mangeney,et al.  Generating ultrafast pulses of light from quantum cascade lasers , 2015 .

[42]  G. Ruocco,et al.  A new class of multiple dispersion grating spectrometers , 1988 .

[43]  Jérôme Faist,et al.  Broadband superluminescence, 5.9 μm to 7.2 μm, of a quantum cascade gain device. , 2015, Optics express.

[44]  Mattias Beck,et al.  Broadband external cavity tuning in the 3-4 μm window , 2013 .

[45]  Hall,et al.  Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb , 2000, Physical review letters.

[46]  G. Giusfredi,et al.  High-coherence mid-infrared frequency comb. , 2013, Optics express.

[47]  Qing Hu,et al.  Terahertz laser frequency combs , 2014 .

[48]  Mattias Beck,et al.  Continuous Wave Operation of a Mid-Infrared Semiconductor Laser at Room Temperature , 2001, Science.

[49]  Yamac Dikmelik,et al.  Coherent frequency combs produced by self frequency modulation in quantum cascade lasers , 2014 .

[50]  J. Faist,et al.  Mid-infrared frequency comb based on a quantum cascade laser , 2012, Nature.

[51]  Mario Siciliani de Cumis,et al.  QCL-based frequency metrology from the mid-infrared to the THz range: a review , 2018, Nanophotonics.