MRK 1216 and NGC 1277 – an orbit-based dynamical analysis of compact, high-velocity dispersion galaxies

We present a dynamical analysis to infer the structural parameters and properties of the two nearby, compact, high-velocity dispersion galaxies MRK 1216 and NGC 1277. Combining deep Hubble Space Telescope imaging, wide-field integral field unit stellar kinematics, and complementary long-slit spectroscopic data out to three effective radii, we construct orbit-based models to constrain their black hole masses, dark matter content and stellar mass-to-light ratios. We obtain a black hole mass of log(M•/M⊙) = 10.1_{-0.2}^{+0.1} for NGC 1277 and an upper limit of log(M•/M⊙) = 10.0 for MRK 1216, within 99.7 per cent (3σ) confidence. The stellar mass-to-light ratios span a range of ΥV = 6.5_{-1.5}^{+1.5} in NGC 1277 and ΥH = 1.8_{-0.8}^{+0.5} in MRK 1216 and are in good agreement with single stellar population models of a single power-law Salpeter initial mass function. Even though our models do not place strong constraints on the dark halo parameters, they suggest that dark matter is a necessary ingredient in MRK 1216, with a dark matter contribution of 22^{+30}_{-20} per cent to the total mass budget within one effective radius. NGC 1277, on the other hand, can be reproduced without the need for a dark halo, and a maximal dark matter fraction of 13 per cent within the same radial extent. In addition, we investigate the orbital structures of both galaxies, which are rotationally supported and consistent with photometric multi-Sersic decompositions, indicating that these compact objects do not host classical, non-rotating bulges formed during recent (z ≤ 2) dissipative events or through violent relaxation. Finally, both MRK 1216 and NGC 1277 are anisotropic, with a global anisotropy parameter δ of 0.33 and 0.58, respectively. While MRK 1216 follows the trend of fast-rotating, oblate galaxies with a flattened velocity dispersion tensor in the meridional plane of the order of βz ˜ δ, NGC 1277 is highly tangentially anisotropic and seems to belong kinematically to a distinct class of objects.

[1]  I. Trujillo,et al.  The initial mass function of a massive relic galaxy , 2015, 1505.01485.

[2]  U. Austin,et al.  HUNTING FOR SUPERMASSIVE BLACK HOLES IN NEARBY GALAXIES WITH THE HOBBY–EBERLY TELESCOPE , 2015, 1502.00632.

[3]  K. Alatalo,et al.  The ATLAS3D Project – XXX. Star formation histories and stellar population scaling relations of early-type galaxies , 2015, 1501.03723.

[4]  K. Alatalo,et al.  The ATLAS 3D project - XXIV. The intrinsic shape distribution of early-type galaxies , 2014, 1408.1099.

[5]  J. Falc'on-Barroso,et al.  Radial variations in the stellar initial mass function of early-type galaxies , 2014, 1404.6533.

[6]  D. Wake,et al.  3D-HST+CANDELS: THE EVOLUTION OF THE GALAXY SIZE–MASS DISTRIBUTION SINCE z = 3 , 2014, 1404.2844.

[7]  K. Schawinski,et al.  SUBMILLIMETER GALAXIES AS PROGENITORS OF COMPACT QUIESCENT GALAXIES , 2014, 1401.1510.

[8]  Christopher E. Moody,et al.  CANDELS+3D-HST: COMPACT SFGs AT z ∼ 2–3, THE PROGENITORS OF THE FIRST QUIESCENT GALAXIES , 2013, 1311.5559.

[9]  Heidelberg,et al.  Supermassive Black Holes and Their Host Galaxies - II. The correlation with near-infrared luminosity revisited , 2013, 1311.1531.

[10]  R. Davies,et al.  The ATLAS3D project - XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators , 2013, 1311.0284.

[11]  M. Balcells,et al.  NGC 1277: A MASSIVE COMPACT RELIC GALAXY IN THE NEARBY UNIVERSE , 2013, 1310.6367.

[12]  S. Ravindranath,et al.  THE PROGENITORS OF THE COMPACT EARLY-TYPE GALAXIES AT HIGH REDSHIFT , 2013, 1310.3819.

[13]  A. Dekel,et al.  Wet Disc Contraction to Galactic Blue Nuggets and Quenching to Red Nuggets , 2013, 1310.1074.

[14]  Jeremy D. Murphy,et al.  THE STELLAR HALOS OF MASSIVE ELLIPTICAL GALAXIES. II. DETAILED ABUNDANCE RATIOS AT LARGE RADIUS , 2013, 1308.2682.

[15]  R. Bender,et al.  THE INFLUENCE OF DARK MATTER HALOS ON DYNAMICAL ESTIMATES OF BLACK HOLE MASS: 10 NEW MEASUREMENTS FOR HIGH-σ EARLY-TYPE GALAXIES , 2013, 1306.1124.

[16]  Heidelberg,et al.  Bottom-heavy initial mass function in a nearby compact L★ galaxy , 2013, 1305.5542.

[17]  E. Emsellem Is the black hole in NGC 1277 really overmassive , 2013, 1305.3630.

[18]  L. Koopmans,et al.  The stellar IMF in early-type galaxies from a non-degenerate set of optical line indices , 2013, 1305.2873.

[19]  R. D. Carvalho,et al.  SPIDER VIII - constraints on the stellar initial mass function of early-type galaxies from a variety of spectral features , 2013, 1305.2273.

[20]  L. Ho,et al.  Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies: Supplemental Material , 2013, 1304.7762.

[21]  T. Lauer,et al.  THE EFFECT OF SPATIAL GRADIENTS IN STELLAR MASS-TO-LIGHT RATIO ON BLACK HOLE MASS MEASUREMENTS , 2013, 1303.4393.

[22]  L. Coccato,et al.  Elliptical galaxies with rapidly decreasing velocity dispersion profiles: nmagic models and dark halo parameter estimates for NGC 4494 , 2013, 1303.2688.

[23]  L. Infante,et al.  The complex nature of the nuclear star cluster in FCC 277 , 2013, 1303.1210.

[24]  G. Shields,et al.  A CAPTURED RUNAWAY BLACK HOLE IN NGC 1277? , 2013, 1302.4458.

[25]  R. Cid Fernandes,et al.  THE EVOLUTION OF GALAXIES RESOLVED IN SPACE AND TIME: A VIEW OF INSIDE-OUT GROWTH FROM THE CALIFA SURVEY , 2013 .

[26]  A. V. D. Wel,et al.  An over-massive black hole in the compact lenticular galaxy NGC 1277 , 2012, Nature.

[27]  Chien Y. Peng,et al.  STRUCTURAL PARAMETERS OF GALAXIES IN CANDELS , 2012, 1211.6954.

[28]  H. Rix,et al.  STELLAR KINEMATICS OF z ∼ 2 GALAXIES AND THE INSIDE-OUT GROWTH OF QUIESCENT GALAXIES, , 2012, 1211.3424.

[29]  Chung-Pei Ma,et al.  REVISITING THE SCALING RELATIONS OF BLACK HOLE MASSES AND HOST GALAXY PROPERTIES , 2012, 1211.2816.

[30]  Timothy A. Davis,et al.  The ATLAS3D project XV: benchmark for early-type galaxies scaling relations from 260 dynamical models: mass-to-light ratio, dark matter, fundamental plane and mass plane , 2012, 1208.3522.

[31]  C. Sandin,et al.  PyCosmic: a robust method to detect cosmics in CALIFA and other fiber-fed integral-field spectroscopy datasets , 2012, 1208.1696.

[32]  M. Franx,et al.  HST/WFC3 CONFIRMATION OF THE INSIDE-OUT GROWTH OF MASSIVE GALAXIES AT 0 < z < 2 AND IDENTIFICATION OF THEIR STAR-FORMING PROGENITORS AT z ∼ 3 , 2012, 1208.0341.

[33]  J. Ostriker,et al.  How do minor mergers promote inside-out growth of ellipticals, transforming the size, density profile and dark matter fraction? , 2012, 1206.5004.

[34]  R. D. Carvalho,et al.  Systematic variation of the stellar initial mass function with velocity dispersion in early-type galaxies , 2012, 1206.1594.

[35]  S. Gonzaga,et al.  The DrizzlePac Handbook , 2012 .

[36]  C. Conroy,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. I. DATA AND EMPIRICAL TRENDS , 2012, 1205.6471.

[37]  Pieter van Dokkum,et al.  THE STELLAR INITIAL MASS FUNCTION IN EARLY-TYPE GALAXIES FROM ABSORPTION LINE SPECTROSCOPY. II. RESULTS , 2012, 1205.6473.

[38]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – I. Stellar population synthesis models , 2012, 1205.5496.

[39]  J. Falc'on-Barroso,et al.  MIUSCAT: extended MILES spectral coverage – II. Constraints from optical photometry , 2012, 1205.5497.

[40]  University of California,et al.  A STELLAR DYNAMICAL MASS MEASUREMENT OF THE BLACK HOLE IN NGC 3998 FROM KECK ADAPTIVE OPTICS OBSERVATIONS , 2012, 1205.0816.

[41]  L. Koopmans,et al.  EVIDENCE FOR A MILD STEEPENING AND BOTTOM-HEAVY INITIAL MASS FUNCTION IN MASSIVE GALAXIES FROM SODIUM AND TITANIUM-OXIDE INDICATORS , 2012, 1204.3823.

[42]  S. Toft,et al.  DEEP ABSORPTION LINE STUDIES OF QUIESCENT GALAXIES AT z ∼ 2: THE DYNAMICAL-MASS–SIZE RELATION AND FIRST CONSTRAINTS ON THE FUNDAMENTAL PLANE , 2012, 1204.3099.

[43]  R. Davies,et al.  Systematic variation of the stellar initial mass function in early-type galaxies , 2012, Nature.

[44]  Tod R. Lauer,et al.  Two ten-billion-solar-mass black holes at the centres of giant elliptical galaxies , 2011, Nature.

[45]  A. Quirrenbach,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey : I. Survey presentation , 2011, 1111.0962.

[46]  T. Lauer,et al.  IS THERE A BLACK HOLE IN NGC 4382? , 2011, 1108.1808.

[47]  V. Cardone,et al.  Stellar mass-to-light ratio gradients in galaxies: correlations with mass , 2011, 1107.2918.

[48]  A. J. Cenarro,et al.  An updated MILES stellar library and stellar population models , 2011, 1107.2303.

[49]  Timothy A. Davis,et al.  The ATLAS3D project – III. A census of the stellar angular momentum within the effective radius of early‐type galaxies: unveiling the distribution of fast and slow rotators , 2011, 1102.4444.

[50]  H. Rix,et al.  THE MAJORITY OF COMPACT MASSIVE GALAXIES AT z ∼ 2 ARE DISK DOMINATED , 2011, 1101.2423.

[51]  S. More,et al.  Dark halo response and the stellar initial mass function in early-type and late-type galaxies , 2010, 1012.5859.

[52]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[53]  A. Marconi,et al.  The Spitzer/IRAC view of black hole–bulge scaling relations , 2010, 1012.3073.

[54]  K. Viironen,et al.  CALIFA, the Calar Alto Legacy Integral Field Area survey: Early Report , 2010, 1012.3002.

[55]  Jeremiah P. Ostriker,et al.  THE TWO PHASES OF GALAXY FORMATION , 2010, 1010.1381.

[56]  R. Bender,et al.  The central black hole mass of the high‐σ but low‐bulge‐luminosity lenticular galaxy NGC 1332★ , 2010, 1009.0515.

[57]  P. Hopkins,et al.  ON SIZES, KINEMATICS, M/L GRADIENTS, AND LIGHT PROFILES OF MASSIVE COMPACT GALAXIES AT z ∼ 2 , 2010, 1008.4127.

[58]  M. Reid,et al.  THE MEGAMASER COSMOLOGY PROJECT. III. ACCURATE MASSES OF SEVEN SUPERMASSIVE BLACK HOLES IN ACTIVE GALAXIES WITH CIRCUMNUCLEAR MEGAMASER DISKS , 2010, 1008.2146.

[59]  C. Peng,et al.  PRECISE BLACK HOLE MASSES FROM MEGAMASER DISKS: BLACK HOLE–BULGE RELATIONS AT LOW MASS , 2010, 1007.2851.

[60]  A. Bolton,et al.  DARK MATTER CONTRACTION AND THE STELLAR CONTENT OF MASSIVE EARLY-TYPE GALAXIES: DISFAVORING “LIGHT” INITIAL MASS FUNCTIONS , 2010, 1007.2409.

[61]  A. J. Cenarro,et al.  Evolutionary stellar population synthesis with MILES – I. The base models and a new line index system , 2010, 1004.4439.

[62]  S. More,et al.  The kinematic connection between galaxies and dark matter haloes , 2010, 1004.4626.

[63]  A. Bolton,et al.  THE INITIAL MASS FUNCTION OF EARLY-TYPE GALAXIES , 2010 .

[64]  Princeton University.,et al.  A COMPREHENSIVE ANALYSIS OF UNCERTAINTIES AFFECTING THE STELLAR MASS–HALO MASS RELATION FOR 0 < z < 4 , 2010, 1001.0015.

[65]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[66]  Y. Zlochower,et al.  Statistical studies of spinning black-hole binaries , 2009, 0910.3197.

[67]  S. Leiden,et al.  Estimating black hole masses in triaxial galaxies , 2009, 0910.0844.

[68]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[69]  P. Dokkum,et al.  A high stellar velocity dispersion for a compact massive galaxy at redshift z = 2.186 , 2009, Nature.

[70]  Karl Gebhardt,et al.  THE BLACK HOLE MASS, STELLAR MASS-TO-LIGHT RATIO, AND DARK HALO IN M87 , 2009, 0906.1492.

[71]  Oxford,et al.  Stellar velocity profiles and line strengths out to four effective radii in the early-type galaxies NGC 3379 and 821 , 2009, 0906.0018.

[72]  Garth D. Illingworth,et al.  AN ULTRA-DEEP NEAR-INFRARED SPECTRUM OF A COMPACT QUIESCENT GALAXY AT z = 2.2 , 2009, 0905.1692.

[73]  O. Lahav,et al.  The 6dF Galaxy Survey: final redshift release (DR3) and southern large-scale structures , 2009, 0903.5451.

[74]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[75]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[76]  J. Ostriker,et al.  MINOR MERGERS AND THE SIZE EVOLUTION OF ELLIPTICAL GALAXIES , 2009, 0903.1636.

[77]  R. V. D. Bosch,et al.  Recovering the intrinsic shape of early‐type galaxies , 2008, 0811.3474.

[78]  Ralf Bender,et al.  STRUCTURE AND FORMATION OF ELLIPTICAL AND SPHEROIDAL GALAXIES , 2008, 0810.1681.

[79]  S. Komossa,et al.  HYPERCOMPACT STELLAR SYSTEMS AROUND RECOILING SUPERMASSIVE BLACK HOLES , 2008, 0809.5046.

[80]  H. Ford,et al.  Recent Structural Evolution of Early-Type Galaxies: Size Growth from z = 1 to z = 0 , 2008, 0808.0077.

[81]  Frank C. van den Bosch,et al.  Concentration, spin and shape of dark matter haloes as a function of the cosmological model: WMAP1, WMAP3 and WMAP5 results , 2008, 0805.1926.

[82]  S. Kay,et al.  Dark matter halo concentrations in the Wilkinson Microwave Anisotropy Probe year 5 cosmology , 2008, 0804.2486.

[83]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[84]  Garth D. Illingworth,et al.  Confirmation of the Remarkable Compactness of Massive Quiescent Galaxies at z ~ 2.3: Early-Type Galaxies Did not Form in a Simple Monolithic Collapse , 2008, 0802.4094.

[85]  R. V. D. Bosch,et al.  Recovery of the internal orbital structure of galaxies , 2007, 0712.0309.

[86]  Institute for Advanced Study,et al.  Triaxial orbit based galaxy models with an application to the (apparent) decoupled core galaxy NGC 4365 , 2007, 0712.0113.

[87]  R. P. van der Marel,et al.  Constraining the Mass Profiles of Stellar Systems: Schwarzschild Modeling of Discrete Velocity Data Sets , 2007, 0710.1872.

[88]  T. Naab,et al.  SAURON’s Challenge for the Major Merger Scenario of Elliptical Galaxy Formation , 2007, 0710.0663.

[89]  R. Bender,et al.  Dynamical modelling of luminous and dark matter in 17 Coma early-type galaxies , 2007, 0709.0691.

[90]  B. McLean,et al.  Markarian Galaxies. I. The Optical Database and Atlas , 2007 .

[91]  E. Emsellem,et al.  The SAURON project – X. The orbital anisotropy of elliptical and lenticular galaxies: revisiting the (V/σ, ɛ) diagram with integral‐field stellar kinematics , 2007, astro-ph/0703533.

[92]  Harald Kuntschner,et al.  The SAURON project – IX. A kinematic classification for early‐type galaxies , 2007, astro-ph/0703531.

[93]  P. P. van der Werf,et al.  NICMOS Imaging of DRGs in the HDF-S: A Relation between Star Formation and Size at z ~ 2.5 , 2006, astro-ph/0611245.

[94]  R. Peletier,et al.  Medium-resolution Isaac Newton Telescope library of empirical spectra - II. The stellar atmospheric parameters , 2006, astro-ph/0611618.

[95]  H. Rix,et al.  Spectroscopic Identification of Massive Galaxies at z ~ 2.3 with Strongly Suppressed Star Formation , 2006, astro-ph/0608446.

[96]  P. Hopkins,et al.  The Kinematic Structure of Merger Remnants , 2006, astro-ph/0607446.

[97]  R. Peletier,et al.  MILES: A Medium resolution INT Library of Empirical Spectra , 2006, astro-ph/0607009.

[98]  T. Naab,et al.  The influence of gas on the structure of merger remnants , 2006, astro-ph/0605155.

[99]  M. Verheijen,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. II. The Wide Integral Field Unit PPak , 2005, astro-ph/0512557.

[100]  G. Efstathiou,et al.  Formation of Early-Type Galaxies from Cosmological Initial Conditions , 2005, astro-ph/0512235.

[101]  P. Hopkins,et al.  The Fundamental Scaling Relations of Elliptical Galaxies , 2005, astro-ph/0511053.

[102]  R. Davies,et al.  The SAURON project - IV. The mass-to-light ratio, the virial mass estimator and the Fundamental Plane of elliptical and lenticular galaxies , 2005, astro-ph/0505042.

[103]  R. Bender,et al.  Regularized orbit models unveiling the stellar structure and dark matter halo of the Coma elliptical NGC 4807 , 2005, astro-ph/0504466.

[104]  P. P. van der Werf,et al.  The Size Evolution of Galaxies since z~3: Combining SDSS, GEMS, and FIRES , 2005, astro-ph/0504225.

[105]  L. Sodré,et al.  Semi‐empirical analysis of Sloan Digital Sky Survey galaxies – I. Spectral synthesis method , 2005 .

[106]  A. Cimatti,et al.  Passively Evolving Early-Type Galaxies at 1.4 ≲ z ≲ 2.5 in the Hubble Ultra Deep Field , 2005, astro-ph/0503102.

[107]  H Germany,et al.  PMAS: The Potsdam Multi‐Aperture Spectrophotometer. I. Design, Manufacture, and Performance , 2005, astro-ph/0502581.

[108]  M. Cappellari,et al.  Dynamical modelling of stars and gas in NGC 2974: determination of mass-to-light ratio, inclination and orbital structure using the Schwarzschild method , 2004, astro-ph/0412186.

[109]  R. Bender,et al.  Mapping stationary axisymmetric phase-space distribution functions by orbit libraries , 2004, astro-ph/0406014.

[110]  M. Bureau,et al.  Bar Diagnostics in Edge-On Spiral Galaxies. III. N-Body Simulations of Disks , 2004, astro-ph/0403226.

[111]  M. Bureau,et al.  Accepted for publication in The Astronomical Journal Stellar Kinematics of Boxy Bulges: Large-Scale Bars and Inner Disks , 2004 .

[112]  Harinder P. Singh,et al.  The Indo-US Library of Coudé Feed Stellar Spectra , 2004, astro-ph/0402435.

[113]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[114]  D. Holz,et al.  Consequences of Gravitational Radiation Recoil , 2004, astro-ph/0402057.

[115]  Eric Emsellem,et al.  Parametric Recovery of Line‐of‐Sight Velocity Distributions from Absorption‐Line Spectra of Galaxies via Penalized Likelihood , 2003, astro-ph/0312201.

[116]  M. Bershady,et al.  The Disk Mass project; science case for a new PMAS IFU module , 2003, astro-ph/0311555.

[117]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[118]  K. Kuijken,et al.  A Dearth of Dark Matter in Ordinary Elliptical Galaxies , 2003, Science.

[119]  K. Ohta,et al.  Color Gradients in Early-Type Galaxies in Abell 2199 , 2003, astro-ph/0304404.

[120]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[121]  Michele Cappellari,et al.  Adaptive spatial binning of integral-field spectroscopic data using Voronoi tessellations , 2003, astro-ph/0302262.

[122]  E. Emsellem,et al.  Difficulties with Recovering the Masses of Supermassive Black Holes from Stellar Kinematical Data , 2002, astro-ph/0210379.

[123]  S. Tremaine,et al.  Axisymmetric Dynamical Models of the Central Regions of Galaxies , 2002, astro-ph/0209483.

[124]  L. Ho,et al.  Detailed Structural Decomposition of Galaxy Images , 2002, astro-ph/0204182.

[125]  M. Cappellari Efficient multi-Gaussian expansion of galaxies , 2002, astro-ph/0201430.

[126]  M. Bureau,et al.  A SAURON study of M32: measuring the intrinsic flattening and the central black hole mass , 2002, astro-ph/0201086.

[127]  M. Baes,et al.  Dark Matter Halos around Elliptical Galaxies: How Reliable Is the Stellar Kinematical Evidence? , 2001, astro-ph/0111137.

[128]  T. Naab,et al.  Statistical Properties of Collisionless Equal- and Unequal-Mass Merger Remnants of Disk Galaxies , 2001, astro-ph/0110179.

[129]  R. Hill,et al.  An Ultraviolet/Optical Atlas of Bright Galaxies , 2001 .

[130]  R. Ellis,et al.  The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions , 2000, astro-ph/0012429.

[131]  R. Bender,et al.  Dynamical Family Properties and Dark Halo Scaling Relations of Giant Elliptical Galaxies , 2000, astro-ph/0012381.

[132]  E. Bell,et al.  Stellar Mass-to-Light Ratios and the Tully-Fisher Relation , 2000, astro-ph/0008056.

[133]  R. Bender,et al.  Orbital structure and mass distribution in elliptical galaxies , 2000 .

[134]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[135]  P. T. de Zeeuw,et al.  Axisymmetric Three-Integral Models for Galaxies , 1999, astro-ph/9902034.

[136]  S. Tremaine,et al.  Spectroscopic Evidence for a Supermassive Black Hole in NGC 4486B , 1997, astro-ph/9703188.

[137]  P. T. de Zeeuw,et al.  Dynamical Modeling of Velocity Profiles: The Dark Halo around the Elliptical Galaxy NGC 2434 , 1997, astro-ph/9702126.

[138]  F. V. D. Bosch On the uncertainties of the central density in axisymmetric galaxies resulting from deprojection , 1996, astro-ph/9611145.

[139]  R. Peletier,et al.  A new chemo-evolutionary population synthesis model for early-type galaxies .1. Theoretical basis , 1996, astro-ph/9605112.

[140]  J. Binney,et al.  On the deprojection of axisymmetric bodies , 1995, astro-ph/9508116.

[141]  S. White,et al.  The Structure of cold dark matter halos , 1995, astro-ph/9508025.

[142]  Ortwin Gerhard,et al.  Line-of-sight velocity profiles in spherical galaxies: breaking the degeneracy between anisotropy and mass , 1993 .

[143]  M. Franx,et al.  A new method for the identification of non-Gaussian line profiles in elliptical galaxies , 1993 .

[144]  R. Bender,et al.  Dynamically hot galaxies. I - Structural properties , 1992 .

[145]  T. Heckman,et al.  Multicolor surface photometry of 17 ellipticals , 1989 .

[146]  T. Statler,et al.  Self-Consistent Models of Perfect Triaxial Galaxies , 1986 .

[147]  T. Zeeuw Elliptical galaxies with separable potentials , 1985 .

[148]  M. Schwarzschild,et al.  A numerical model for a triaxial stellar system in dynamical equilibrium , 1979 .

[149]  M. Franx,et al.  Structure and dynamics of elliptical galaxies , 1987 .

[150]  G. Rybicki Deprojection of Galaxies: How much can be Learned? , 1987 .