Managing Interfacial Hot‐Carrier Cooling and Extraction Kinetics for Inverted Ma‐Free Perovskite Solar Cells Over 23% Efficiency via Dion–Jacobson 2D Capping Layer

[1]  Hao Wang,et al.  Surface‐Energy‐Regulated Growth of α‐Phase Cs0.03FA0.97PbI3 for Highly Efficient and Stable Inverted Perovskite Solar Cells , 2023, Advanced materials.

[2]  Edgar R. Nandayapa,et al.  The Electronic Properties of a 2D Ruddlesden‐Popper Perovskite and its Energy Level Alignment with a 3D Perovskite Enable Interfacial Energy Transfer , 2022, Advanced Functional Materials.

[3]  Licheng Sun,et al.  In-depth understanding the effect of electron-withdrawing/-donating groups on the interfacial carrier dynamics in naphthalimide-treated perovskite solar cells , 2022, Journal of Energy Chemistry.

[4]  P. Zhang,et al.  Efficient Inverted Perovskite Solar Cells with a Low‐Dimensional Halide/Perovskite Heterostructure , 2022, Advanced Energy Materials.

[5]  Yangguang Shi,et al.  Ethylenediamine Addition Improves Performance and Suppresses Phase Instabilities in Mixed-Halide Perovskites , 2022, ACS Energy Letters.

[6]  Bryon W. Larson,et al.  Surface reaction for efficient and stable inverted perovskite solar cells , 2022, Nature.

[7]  Jinsong Huang,et al.  Excess PbI2 Management via Multimode Supramolecular Complex Engineering Enables High‐Performance Perovskite Solar Cells , 2022, Advanced Energy Materials.

[8]  Rongjun Zhao,et al.  Enhancing the Hot Carrier Injection of Perovskite Solar Cells by Incorporating a Molecular Dipole Interlayer , 2022, Advanced Functional Materials.

[9]  F. Gao,et al.  Decoupling engineering of formamidinium–cesium perovskites for efficient photovoltaics , 2022, National Science Review.

[10]  Zhigang Zang,et al.  Stabilizing Perovskite Precursor by Synergy of Functional Groups for NiOx-Based Inverted Solar Cells with 23.5% Efficiency. , 2022, Angewandte Chemie.

[11]  Xudong Wang,et al.  A-Site Diamine Cation Anchoring Enables Efficient Charge Transfer and Suppressed Ion Migration in Bi-based Hybrid Perovskite Single Crystals. , 2022, Angewandte Chemie.

[12]  Yantao Shi,et al.  Lewis Base Governing Superfacial Proton Behavior of Hybrid Perovskite: Basicity Dependent Passivation Strategy , 2022, Chemical Engineering Journal.

[13]  Zhen Li,et al.  Organometallic-functionalized interfaces for highly efficient inverted perovskite solar cells , 2022, Science.

[14]  Andrew H. Proppe,et al.  Quantum-size-tuned heterostructures enable efficient and stable inverted perovskite solar cells , 2022, Nature Photonics.

[15]  Yiming Li,et al.  Efficient, stable formamidinium-cesium perovskite solar cells and minimodules enabled by crystallization regulation , 2022, Joule.

[16]  Thomas G. Allen,et al.  Damp heat–stable perovskite solar cells with tailored-dimensionality 2D/3D heterojunctions , 2022, Science.

[17]  Xiaodong Li,et al.  Constructing heterojunctions by surface sulfidation for efficient inverted perovskite solar cells , 2022, Science.

[18]  G. Fang,et al.  Interfacial engineering of a thiophene-based 2D/3D perovskite heterojunction for efficient and stable inverted wide-bandgap perovskite solar cells , 2021, Nano Energy.

[19]  Licheng Sun,et al.  Interfacial Defect Passivation and Charge Carrier Management for Efficient Perovskite Solar Cells via a Highly Crystalline Polymer , 2021, ACS Energy Letters.

[20]  Junshuai Zhang,et al.  Effect of Side-Group-Regulated Dipolar Passivating Molecules on CsPbBr3 Perovskite Solar Cells , 2021 .

[21]  Hyunjung Shin,et al.  Acid Dissociation Constant: A Criterion for Selecting Passivation Agents in Perovskite Solar Cells , 2021 .

[22]  A. Hagfeldt,et al.  Organic Ammonium Halide Modulators as Effective Strategy for Enhanced Perovskite Photovoltaic Performance , 2021, Advanced science.

[23]  O. Bakr,et al.  Effect of Zinc-doping on the Reduction of the Hot-carrier Cooling Rate in Halide Perovskites. , 2021, Angewandte Chemie.

[24]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[25]  Jinsong Hu,et al.  Crystallization Kinetics Modulation of FASnI3 Films with Pre-nucleation Clusters for Efficient Lead-free Perovskite Solar Cells. , 2020, Angewandte Chemie.

[26]  Shengjie Ling,et al.  Cs0.15FA0.85PbI3/CsxFA1-xPbI3 Core/Shell Heterostructure for Highly Stable and Efficient Perovskite Solar Cells , 2020 .

[27]  Jianbin Xu,et al.  Efficient Slantwise Aligned Dion-Jacobson Phase Perovskite Solar Cells Based on Trans-1,4-Cyclohexanediamine. , 2020, Small.

[28]  Qi Chen,et al.  Interfacial Dipole in Organic and Perovskite Solar Cells. , 2020, Journal of the American Chemical Society.

[29]  Zhengshan J. Yu,et al.  Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells , 2020 .

[30]  Ka-lok Chiu,et al.  Full Defects Passivation Enables 21% Efficiency Perovskite Solar Cells Operating in Air , 2020, Advanced Energy Materials.

[31]  G. Fang,et al.  Arylammonium-Assisted Reduction of the Open-Circuit Voltage Deficit in Wide-Bandgap Perovskite Solar Cells: The Role of Suppressed Ion Migration , 2020 .

[32]  G. Cui,et al.  Perovskite Solution Aging: What Happened and How to Inhibit? , 2020 .

[33]  M. Kanatzidis,et al.  Organic Cation Alloying on Intralayer A and Interlayer A' sites in 2D Hybrid Dion-Jacobson Lead Bromide Perovskites (A')(A)Pb2Br7. , 2020, Journal of the American Chemical Society.

[34]  Zhenghong Lu,et al.  Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells , 2020 .

[35]  H. Snaith,et al.  Oxidative Passivation of Metal Halide Perovskites , 2019, Joule.

[36]  Xingwang Zhang,et al.  Recent Progresses on Defect Passivation toward Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[37]  M. Saidaminov,et al.  Efficient and Stable Inverted Perovskite Solar Cells Incorporating Secondary Amines , 2019, Advanced materials.

[38]  Liyuan Han,et al.  Stabilizing heterostructures of soft perovskite semiconductors , 2019, Science.

[39]  Yongli Gao,et al.  Cation and anion immobilization through chemical bonding enhancement with fluorides for stable halide perovskite solar cells , 2019, Nature Energy.

[40]  Ayan A. Zhumekenov,et al.  Why are Hot Holes Easier to Extract than Hot Electrons from Methylammonium Lead Iodide Perovskite? , 2019, Advanced Energy Materials.

[41]  Bo Jiao,et al.  Conjugated Molecules “Bridge”: Functional Ligand toward Highly Efficient and Long‐Term Stable Perovskite Solar Cell , 2019, Advanced Functional Materials.

[42]  M. Kanatzidis,et al.  Compositional and Solvent Engineering in Dion–Jacobson 2D Perovskites Boosts Solar Cell Efficiency and Stability , 2019, Advanced Energy Materials.

[43]  Jianhui Fu,et al.  Slow Hot‐Carrier Cooling in Halide Perovskites: Prospects for Hot‐Carrier Solar Cells , 2019, Advanced materials.

[44]  M. Kunitski,et al.  Double-slit photoelectron interference in strong-field ionization of the neon dimer , 2018, Nature Communications.

[45]  Yue Hu,et al.  Lead-Free Dion–Jacobson Tin Halide Perovskites for Photovoltaics , 2018, ACS Energy Letters.

[46]  Jinsong Hu,et al.  Manipulation of facet orientation in hybrid perovskite polycrystalline films by cation cascade , 2018, Nature Communications.

[47]  Chun‐Sing Lee,et al.  2D Perovskites with Short Interlayer Distance for High‐Performance Solar Cell Application , 2018, Advanced materials.

[48]  M. Wasielewski,et al.  Hybrid Dion-Jacobson 2D Lead Iodide Perovskites. , 2018, Journal of the American Chemical Society.

[49]  M. Loi,et al.  Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites , 2018, Nature Communications.

[50]  Tze Chien Sum,et al.  Hot carrier cooling mechanisms in halide perovskites , 2017, Nature Communications.

[51]  M. Grätzel,et al.  Slow cooling and highly efficient extraction of hot carriers in colloidal perovskite nanocrystals , 2017, Nature Communications.

[52]  Tak W. Kee,et al.  Acoustic-optical phonon up-conversion and hot-phonon bottleneck in lead-halide perovskites , 2017, Nature Communications.

[53]  T. Trindade,et al.  N-doped carbon quantum dots/TiO2 composite with improved photocatalytic activity , 2016 .

[54]  J. Luther,et al.  Observation of a hot-phonon bottleneck in lead-iodide perovskites , 2015, Nature Photonics.

[55]  R. Friend,et al.  Hot-carrier cooling and photoinduced refractive index changes in organic–inorganic lead halide perovskites , 2015, Nature Communications.

[56]  A. Marini,et al.  The mechanism of slow hot-hole cooling in lead-iodide perovskite: first-principles calculation on carrier lifetime from electron-phonon interaction. , 2015, Nano letters.

[57]  Yongli Gao,et al.  Qualifying composition dependent p and n self-doping in CH3NH3PbI3 , 2014 .

[58]  Prashant V. Kamat,et al.  Band filling with free charge carriers in organometal halide perovskites , 2014, Nature Photonics.