Introduction to Dynamical Systems
暂无分享,去创建一个
[1] R. Devaney. An Introduction to Chaotic Dynamical Systems , 1990 .
[2] R. Robinson,et al. Structural stability of C1 diffeomorphisms , 1976 .
[3] Jonathan L. King,et al. A map with topological minimal self-joinings in the sense of del Junco , 1990, Ergodic Theory and Dynamical Systems.
[4] D. V. Anosov. Tangent fields of transversal foliations in “U-systems” , 1967 .
[5] J. Robbin. A structural stability theorem , 1971 .
[6] Paul R. Halmos,et al. In General a Measure Preserving Transformation is Mixing , 1944 .
[7] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[8] R. F. Williams. Lorenz knots are prime , 1984, Ergodic Theory and Dynamical Systems.
[9] Sebastian van Strien. New Directions in Dynamical Systems: Smooth Dynamics on the Interval (with an emphasis on quadratic-like maps) , 1988 .
[10] Mitsuhiro Shishikura,et al. On the quasiconformal surgery of rational functions , 1987 .
[11] Douglas Lind,et al. An Introduction to Symbolic Dynamics and Coding , 1995 .
[12] Sergey Brin,et al. The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.
[13] J. Hale,et al. Methods of Bifurcation Theory , 1996 .
[14] J. Eckmann,et al. Iterated maps on the interval as dynamical systems , 1980 .
[15] R L Graham,et al. Ramsey's Theorem for a Class of Categories. , 1972, Proceedings of the National Academy of Sciences of the United States of America.
[16] Y. Pesin. CHARACTERISTIC LYAPUNOV EXPONENTS AND SMOOTH ERGODIC THEORY , 1977 .
[17] Budapest,et al. ON DIFFERENCE SETS OF SEQUENCES OF INTEGERS , 2002 .
[18] Ricardo Mañé,et al. A proof of the C1 stability conjecture , 1987 .
[19] V. Bergelson,et al. Ergodic Ramsey Theory–an Update , 1996 .
[20] Fred W. Roush,et al. THE WILLIAMS CONJECTURE IS FALSE FOR IRREDUCIBLE SUBSHIFTS , 1999 .
[21] M. Feigenbaum. The universal metric properties of nonlinear transformations , 1979 .
[22] R. Adler,et al. Entropy, a complete metric invariant for automorphisms of the torus. , 1967, Proceedings of the National Academy of Sciences of the United States of America.
[23] Calvin C. Moore,et al. ERGODICITY OF FLOWS ON HOMOGENEOUS SPACES. , 1966 .
[24] H. Furstenberg,et al. The Structure of Distal Flows , 1963 .
[25] Benjamin Weiss,et al. Topological dynamics and combinatorial number theory , 1978 .
[26] P. Montel,et al. Lecons sur les familles normales de fonctions analytiques et leurs applications , 1974 .
[27] A. N. Sharkovskiĭ. COEXISTENCE OF CYCLES OF A CONTINUOUS MAP OF THE LINE INTO ITSELF , 1995 .
[28] I. Good,et al. Ergodic theory and information , 1966 .
[29] J. Milnor. Topology from the differentiable viewpoint , 1965 .
[30] Alan F. Beardon,et al. Iteration of Rational Functions , 1991 .
[31] E. Wright,et al. An Introduction to the Theory of Numbers , 1939 .
[32] W. Thurston,et al. On iterated maps of the interval , 1988 .
[33] R. F. Williams. Classification of subshifts of finite type , 1973 .
[34] E. T.. An Introduction to the Theory of Numbers , 1946, Nature.
[35] Leopold Flatto,et al. Geodesic flows, interval maps, and symbolic dynamics , 1991 .
[36] David G. Sullivan,et al. Solution of the Fatou - Julia problem on wandering domains , 1985 .
[37] J. Mather,et al. Characterization of Anosov Diffeomorphisms , 1968 .
[38] J. Palis,et al. Geometric theory of dynamical systems , 1982 .
[39] J. H. van Lint,et al. Functions of one complex variable II , 1997 .
[40] Mike Boyle,et al. Symbolic Dynamics and Matrices , 1993 .
[41] R. Bowen,et al. MARKOV PARTITIONS FOR AXIOM A DIFFEOMORPHISMS. , 1970 .
[42] N. Friedman,et al. Introduction to Ergodic Theory , 1971 .
[43] E. Dinaburg. ON THE RELATIONS AMONG VARIOUS ENTROPY CHARACTERISTICS OF DYNAMICAL SYSTEMS , 1971 .
[44] F. R. Gantmakher. The Theory of Matrices , 1984 .
[45] L. Ahlfors. Conformal Invariants: Topics in Geometric Function Theory , 1973 .
[46] E. T. Bell. Review: G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers , 1939 .
[47] B. Weiss. Subshifts of finite type and sofic systems , 1973 .
[48] J. Yorke,et al. Period Three Implies Chaos , 1975 .
[49] G. Folland. A course in abstract harmonic analysis , 1995 .
[50] E. Szemeri~di,et al. On Sets of Integers Containing No Four Elements in Arithmetic Progression , .
[51] A. Douady,et al. Systèmes dynamiques holomorphes , 1983 .
[52] L. Wayne Goodwyn,et al. Topological entropy bounds measure-theoretic entropy , 1969 .
[53] Oscar E. LanfordIII. A shorter proof of the existence of the Feigenbaum fixed point , 1984 .
[54] P. Halmos. Lectures on ergodic theory , 1956 .
[55] A. Katok,et al. Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .
[56] Y. Sinai,et al. SOME SMOOTH ERGODIC SYSTEMS , 1967 .
[57] Grzegorz W. KoŁodko,et al. © Gordon and Breach, Science Publishers, Inc. , 1990 .
[58] András Sárközy,et al. On difference sets of sequences of integers. I , 1978 .
[59] V. Rokhlin. LECTURES ON THE ENTROPY THEORY OF MEASURE-PRESERVING TRANSFORMATIONS , 1967 .