Fundus-controlled perimetry (microperimetry): Application as outcome measure in clinical trials

[1]  R. MacLaren,et al.  Microperimetry Hill of Vision and Volumetric Measures of Retinal Sensitivity , 2021, Translational vision science & technology.

[2]  H. Agostini,et al.  Chorioretinopathia centralis serosa , 2021, Der Ophthalmologe.

[3]  I. Constable,et al.  Edge of Scotoma Sensitivity as a Microperimetry Clinical Trial End Point in USH2A Retinopathy , 2020, Translational vision science & technology.

[4]  Avenell L. Chew,et al.  Interpreting MAIA Microperimetry Using Age- and Retinal Loci-Specific Reference Thresholds , 2020, Translational vision science & technology.

[5]  P. Sieving,et al.  Advancing Clinical Trials for Inherited Retinal Diseases: Recommendations from the Second Monaciano Symposium , 2020, Translational vision science & technology.

[6]  B. Munoz,et al.  Longitudinal Microperimetric Changes of Macular Sensitivity in Stargardt Disease After 12 Months: ProgStar Report No. 13. , 2020, JAMA ophthalmology.

[7]  R. Asaoka,et al.  The usefulness of the retinal sensitivity measurement with a microperimetry for predicting the visual prognosis of branch retinal vein occlusion with macular edema , 2020, Graefe's Archive for Clinical and Experimental Ophthalmology.

[8]  C. Curcio,et al.  Functionally validated imaging endpoints in the Alabama study on early age-related macular degeneration 2 (ALSTAR2): design and methods , 2020, BMC Ophthalmology.

[9]  A. Cideciyan,et al.  The Effect of Attention on Fixation Stability during Dynamic Fixation Testing in Stargardt Disease. , 2020, American journal of ophthalmology.

[10]  C. Curcio,et al.  Hyperreflective foci and specks are associated with delayed rod-mediated dark adaptation in non-neovascular age-related macular degeneration. , 2020, Ophthalmology. Retina.

[11]  F. Holz,et al.  Retinal light sensitivity as outcome measure in recessive Stargardt disease , 2020, British Journal of Ophthalmology.

[12]  Steffen Schmitz-Valckenberg,et al.  Determinants of cone- and rod-function in geographic atrophy: AI-based structure-function correlation. , 2020, American journal of ophthalmology.

[13]  R. MacLaren,et al.  Test‐retest repeatability of microperimetry in patients with retinitis pigmentosa caused by mutations in RPGR , 2020, Clinical & experimental ophthalmology.

[14]  A. Cideciyan,et al.  Faster Sensitivity Loss around Dense Scotomas than for Overall Macular Sensitivity in Stargardt Disease: ProgStar Report No. 14. , 2020, American journal of ophthalmology.

[15]  Chris A. Johnson,et al.  Effect of fundus tracking on structure–function relationship in glaucoma , 2020, British Journal of Ophthalmology.

[16]  R. Guymer,et al.  Visual Function Decline Resulting from Geographic Atrophy: Results from the Chroma and Spectri Phase 3 Trials. , 2020, Ophthalmology. Retina.

[17]  B. Lujan,et al.  Retinal gene therapy in X-linked retinitis pigmentosa caused by mutations in RPGR: Results at 6 months in a first in human clinical trial , 2020, Nature Medicine.

[18]  F. Holz,et al.  MESOPIC AND DARK-ADAPTED TWO-COLOR FUNDUS-CONTROLLED PERIMETRY IN GEOGRAPHIC ATROPHY SECONDARY TO AGE-RELATED MACULAR DEGENERATION. , 2020, Retina.

[19]  A. Cideciyan,et al.  Progress in treating inherited retinal diseases: Early subretinal gene therapy clinical trials and candidates for future initiatives , 2019, Progress in Retinal and Eye Research.

[20]  Y. Momozawa,et al.  Direct comparison of retinal structure and function in retinitis pigmentosa by co-registering microperimetry and optical coherence tomography , 2019, PloS one.

[21]  F. Medeiros,et al.  Sample Size Requirements of Glaucoma Clinical Trials When Using Combined Optical Coherence Tomography and Visual Field Endpoints , 2019, Scientific Reports.

[22]  G. Staurenghi,et al.  SCOTOPIC AND FAST MESOPIC MICROPERIMETRY IN EYES WITH DRUSEN AND RETICULAR PSEUDODRUSEN. , 2019, Retina.

[23]  M. Barboni,et al.  Retinal Function in Patients with Adalimumab Treatment: Long-term Follow-up with Microperimetry , 2019, Ocular immunology and inflammation.

[24]  K. Xue,et al.  The Impact of Progressive Visual Field Constriction on Reading Ability in an Inherited Retinal Degeneration , 2019, Ophthalmologica.

[25]  Jennifer H. Acton,et al.  Microperimetry in Age-Related Macular Degeneration: An Evidence-Base for Pattern Deviation Probability Analysis in Microperimetry , 2019, Translational vision science & technology.

[26]  Ruikang K. Wang,et al.  Cone Structure Persists Beyond Margins of Short-Wavelength Autofluorescence in Choroideremia , 2019, Investigative ophthalmology & visual science.

[27]  R. Abreu-González,et al.  Structure–Function Correlation Using OCT Angiography And Microperimetry In Diabetic Retinopathy , 2019, Clinical ophthalmology.

[28]  M. Wintergerst,et al.  Association of Vision-related Quality of Life with Visual Function in Age-Related Macular Degeneration , 2019, Scientific Reports.

[29]  M. Rubinstein,et al.  Biofeedback fixation training method for improving eccentric vision in patients with loss of foveal function secondary to different maculopathies , 2019, International Ophthalmology.

[30]  F. Holz,et al.  Light Sensitivity Within Areas of Geographic Atrophy Secondary to Age-Related Macular Degeneration. , 2019, Investigative ophthalmology & visual science.

[31]  G. Rubin,et al.  Binocular Inhibition of Reading in Macular Telangiectasia Type 2. , 2019, Investigative ophthalmology & visual science.

[32]  G. Querques,et al.  Multimodal Imaging Assessment of Vascular and Neurodegenerative Retinal Alterations in Type 1 Diabetic Patients without Fundoscopic Signs of Diabetic Retinopathy , 2019, Journal of clinical medicine.

[33]  J. Haines,et al.  Retinal Sensitivity Using Microperimetry in Age-Related Macular Degeneration in an Amish Population. , 2019, Ophthalmic surgery, lasers & imaging retina.

[34]  Stefanie G. Schuman,et al.  Longitudinal Study of Visual Function in Dry Age-Related Macular Degeneration at 12 Months. , 2019, Ophthalmology. Retina.

[35]  F. Holz,et al.  Artificial intelligence for morphology-based function prediction in neovascular age-related macular degeneration , 2019, Scientific Reports.

[36]  C. Luu,et al.  Secondary and Exploratory Outcomes of the Subthreshold Nanosecond Laser Intervention Randomized Trial in Age-Related Macular Degeneration: A LEAD Study Report. , 2019, Ophthalmology. Retina.

[37]  R. Guymer,et al.  Performance of a Defect-Mapping Microperimetry Approach for Characterizing Progressive Changes in Deep Scotomas , 2019, Translational vision science & technology.

[38]  Alexander Sumaroka,et al.  Treatment Potential for Macular Cone Vision in Leber Congenital Amaurosis Due to CEP290 or NPHP5 Mutations: Predictions From Artificial Intelligence , 2019, Investigative ophthalmology & visual science.

[39]  F. Ferris,et al.  Longitudinal Study of Dark Adaptation as a Functional Outcome Measure for Age-Related Macular Degeneration. , 2019, Ophthalmology.

[40]  A. Turpin,et al.  Robot Assistants for Perimetry: A Study of Patient Experience and Performance , 2019, Translational vision science & technology.

[41]  A. V. Cideciyan,et al.  Short-Wavelength Sensitive Cone (S-cone) Testing as an Outcome Measure for NR2E3 Clinical Treatment Trials , 2019, International journal of molecular sciences.

[42]  I. Constable,et al.  Effect of Ciliary Neurotrophic Factor on Retinal Neurodegeneration in Patients with Macular Telangiectasia Type 2: A Randomized Clinical Trial. , 2019, Ophthalmology.

[43]  P. Charbel Issa,et al.  Dark-Adapted Two-Color Fundus-Controlled Perimetry in Macular Telangiectasia Type 2. , 2019, Investigative ophthalmology & visual science.

[44]  B. Chauhan,et al.  Improving the Feasibility of Glaucoma Clinical Trials Using Trend-Based Visual Field Progression Endpoints. , 2019, Ophthalmology. Glaucoma.

[45]  F. Ferris,et al.  A Workshop on Measuring the Progression of Atrophy Secondary to Stargardt Disease in the ProgStar Studies: Findings and Lessons Learned , 2019, Translational vision science & technology.

[46]  Aaron Y. Lee,et al.  Estimating Retinal Sensitivity Using Optical Coherence Tomography With Deep-Learning Algorithms in Macular Telangiectasia Type 2 , 2019, JAMA network open.

[47]  Chris A. Johnson,et al.  A Comparison between the Compass Fundus Perimeter and the Humphrey Field Analyzer. , 2019, Ophthalmology.

[48]  Ivana K. Kim,et al.  Microperimetry in age-related macular degeneration: association with macular morphology assessed by optical coherence tomography , 2019, British Journal of Ophthalmology.

[49]  C. Luu,et al.  Microperimetry for geographic atrophy secondary to age-related macular degeneration. , 2019, Survey of ophthalmology.

[50]  T. Lamb,et al.  Topographic Rod Recovery Profiles after a Prolonged Dark Adaptation in Subjects with Reticular Pseudodrusen. , 2018, Ophthalmology. Retina.

[51]  Bianca S. Gerendas,et al.  Correlation between morphological characteristics in spectral‐domain‐optical coherence tomography, different functional tests and a patient's subjective handicap in acute central serous chorioretinopathy , 2018, Acta ophthalmologica.

[52]  Anna Rudenko,et al.  Beneficial effects on vision in patients undergoing retinal gene therapy for choroideremia , 2018, Nature Medicine.

[53]  J. Keunen,et al.  Half-Dose Photodynamic Therapy versus High-Density Subthreshold Micropulse Laser Treatment in Patients with Chronic Central Serous Chorioretinopathy: The PLACE Trial. , 2018, Ophthalmology.

[54]  R. MacLaren,et al.  Optimisation of dark adaptation time required for mesopic microperimetry , 2018, British Journal of Ophthalmology.

[55]  Andrew Astle,et al.  Predicting Visual Acuity From Visual Field Sensitivity in Age-Related Macular Degeneration. , 2018, Investigative ophthalmology & visual science.

[56]  Siamak Yousefi,et al.  Detection of Longitudinal Visual Field Progression in Glaucoma Using Machine Learning. , 2018, American journal of ophthalmology.

[57]  F. Holz,et al.  Comparison of Green Versus Blue Fundus Autofluorescence in ABCA4-Related Retinopathy , 2018, Translational vision science & technology.

[58]  I. MacDonald,et al.  Two-Year Results After AAV2-Mediated Gene Therapy for Choroideremia: The Alberta Experience. , 2018, American journal of ophthalmology.

[59]  G. Rubin,et al.  MACUSTAR: Development and Clinical Validation of Functional, Structural, and Patient-Reported Endpoints in Intermediate Age-Related Macular Degeneration , 2018, Ophthalmologica.

[60]  G. Montesano,et al.  Evidence for alterations in fixational eye movements in glaucoma , 2018, BMC Ophthalmology.

[61]  F. Holz,et al.  Mesopic and dark-adapted two-color fundus-controlled perimetry in patients with cuticular, reticular, and soft drusen , 2018, Eye.

[62]  R. MacLaren,et al.  Beyond the average threshold: Alternatives in the analysis of microperimetry data , 2018 .

[63]  F. Holz,et al.  Dark-adapted two-color fundus-controlled perimetry in the junctional zone of geographic atrophy , 2018 .

[64]  F. Medeiros,et al.  Comparison of Visual Field Point-Wise Event-Based and Global Trend-Based Analysis for Detecting Glaucomatous Progression , 2018, Translational vision science & technology.

[65]  M.,et al.  Changes [I] , 2018, The Complete Poems of William Barnes, Vol. 2: Poems in the Modified Form of the Dorset Dialect.

[66]  M. Crossland,et al.  Transplantation of Human Embryonic Stem Cell-Derived Retinal Pigment Epithelial Cells in Macular Degeneration , 2018, Ophthalmology.

[67]  Srinivas R. Sadda,et al.  Efficacy and Safety of Lampalizumab for Geographic Atrophy Due to Age-Related Macular Degeneration: Chroma and Spectri Phase 3 Randomized Clinical Trials , 2018, JAMA ophthalmology.

[68]  Sandra S Stinnett,et al.  Visual Function Metrics in Early and Intermediate Dry Age-related Macular Degeneration for Use as Clinical Trial Endpoints. , 2018, American journal of ophthalmology.

[69]  J. Salmon,et al.  The effect of trabeculectomy surgery on the central visual field in patients with glaucoma using microperimetry and optical coherence tomography , 2018, Eye.

[70]  J. Salmon,et al.  Microperimetry and optical coherence tomography imaging in the fellow eye of patients with unilateral focal ischaemic glaucoma , 2018, Eye.

[71]  F. Medeiros,et al.  Impact of Different Visual Field Testing Paradigms on Sample Size Requirements for Glaucoma Clinical Trials , 2018, Scientific Reports.

[72]  F. Holz,et al.  Retest Reliability of Mesopic and Dark-Adapted Microperimetry in Patients With Intermediate Age-Related Macular Degeneration and Age-Matched Controls. , 2018, Investigative ophthalmology & visual science.

[73]  M. Barboni,et al.  Individual Test Point Fluctuations of Macular Sensitivity in Healthy Eyes and Eyes With Age-Related Macular Degeneration Measured With Microperimetry , 2018, Translational vision science & technology.

[74]  R. Fimmers,et al.  Structure-Function Analysis in Patients With Intermediate Age-Related Macular Degeneration. , 2018, Investigative ophthalmology & visual science.

[75]  S. Brodie,et al.  ISCEV guide to visual electrodiagnostic procedures , 2018, Documenta Ophthalmologica.

[76]  F. Holz,et al.  Mesopic and Dark-Adapted Two-Color Fundus-Controlled Perimetry in Choroidal Neovascularization Secondary to Age-Related Macular Degeneration , 2018, Translational vision science & technology.

[77]  Sina Farsiu,et al.  Optical Coherence Tomography Predictors of Risk for Progression to Non-Neovascular Atrophic Age-Related Macular Degeneration. , 2017, Ophthalmology.

[78]  F. Holz,et al.  Visual field indices and patterns of visual field deficits in mesopic and dark-adapted two-colour fundus-controlled perimetry in macular diseases , 2017, British Journal of Ophthalmology.

[79]  P. Campochiaro,et al.  Progression of Retinitis Pigmentosa as Measured on Microperimetry: The PREP-1 Study. , 2017, Ophthalmology. Retina.

[80]  V. Chong,et al.  COMPARING MICROPERIMETRIC AND STRUCTURAL FINDINGS IN PATIENTS WITH BRANCH RETINAL VEIN OCCLUSION AND DIABETIC MACULAR EDEMA , 2017, Retina.

[81]  Michael V. Boland,et al.  Evidence-based Criteria for Assessment of Visual Field Reliability. , 2017, Ophthalmology.

[82]  I. Constable,et al.  Intersession Test–Retest Variability of Microperimetry in Type 2 Macular Telangiectasia , 2017, Translational vision science & technology.

[83]  F. Holz,et al.  Persistent visual loss in dengue fever due to outer retinal damage , 2017, Clinical & experimental ophthalmology.

[84]  I. MacDonald,et al.  THE NATURAL HISTORY OF FULL-FIELD STIMULUS THRESHOLD DECLINE IN CHOROIDEREMIA , 2017, Retina.

[85]  F. Holz,et al.  Evaluation of Two Systems for Fundus-Controlled Scotopic and Mesopic Perimetry in Eye with Age-Related Macular Degeneration , 2017, Translational vision science & technology.

[86]  F. Ferris,et al.  Report From the NEI/FDA Endpoints Workshop on Age-Related Macular Degeneration and Inherited Retinal Diseases , 2017, Investigative ophthalmology & visual science.

[87]  A. Cideciyan,et al.  Macular Sensitivity Measured With Microperimetry in Stargardt Disease in the Progression of Atrophy Secondary to Stargardt Disease (ProgStar) Study: Report No. 7 , 2017, JAMA ophthalmology.

[88]  S. Vujosevic,et al.  Diabetic Macular Edema With and Without Subfoveal Neuroretinal Detachment: Two Different Morphologic and Functional Entities. , 2017, American journal of ophthalmology.

[89]  London,et al.  European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Chapter 3: Treatment principles and options Supported by the EGS Foundation: Part 1: Foreword; Introduction; Glossary; Chapter 3 Treatment principles and options. , 2017, The British journal of ophthalmology.

[90]  S. Sadda,et al.  Interdevice comparison of retinal sensitivity assessments in a healthy population: the CenterVue MAIA and the Nidek MP-3 microperimeters , 2017, British Journal of Ophthalmology.

[91]  T. Peto,et al.  SCOTOMA CHARACTERISTICS IN MACULAR TELANGIECTASIA TYPE 2: MacTel Project Report No. 7—The MacTel Research Group , 2017, Retina.

[92]  Emily Y. Chew,et al.  LONGITUDINAL CORRELATION OF ELLIPSOID ZONE LOSS AND FUNCTIONAL LOSS IN MACULAR TELANGIECTASIA TYPE 2 , 2017, Retina.

[93]  F. Medeiros Biomarkers and Surrogate Endpoints: Lessons Learned From Glaucoma , 2017, Investigative ophthalmology & visual science.

[94]  G. Rubin,et al.  Properties of Visual Field Defects Around the Monocular Preferred Retinal Locus in Age-Related Macular Degeneration. , 2017, Investigative ophthalmology & visual science.

[95]  Sina Farsiu,et al.  Correlation Between Macular Integrity Assessment and Optical Coherence Tomography Imaging of Ellipsoid Zone in Macular Telangiectasia Type 2 , 2017, Investigative ophthalmology & visual science.

[96]  F. Holz,et al.  Effective Dynamic Range and Retest Reliability of Dark-Adapted Two-Color Fundus-Controlled Perimetry in Patients With Macular Diseases. , 2017, Investigative ophthalmology & visual science.

[97]  F. Holz,et al.  Combined Fundus Autofluorescence and Near Infrared Reflectance as Prognostic Biomarkers for Visual Acuity in Foveal-Sparing Geographic Atrophy. , 2017, Investigative ophthalmology & visual science.

[98]  London,et al.  European Glaucoma Society Terminology and Guidelines for Glaucoma, 4th Edition - Part 1Supported by the EGS Foundation , 2017, British Journal of Ophthalmology.

[99]  M. Sidky,et al.  Value of Microperimetry in Detecting Early Retinal Toxicity of Hydroxychloroquine in Children with Juvenile Systemic Lupus Erythematosus , 2017, Ophthalmologica.

[100]  E. Pilotto,et al.  Microperimetry in age: related macular degeneration , 2017, Eye.

[101]  K. Xue,et al.  Structural and Functional Recovery Following Limited Iatrogenic Macular Detachment for Retinal Gene Therapy , 2017, JAMA ophthalmology.

[102]  W. M. Harmening,et al.  Adaptive Optiken – Möglichkeiten für die Diagnostik hereditärer Netzhauterkrankungen , 2017, Klinische Monatsblätter für Augenheilkunde.

[103]  S. Vujosevic,et al.  Long-term longitudinal modifications in mesopic microperimetry in early and intermediate age-related macular degeneration , 2017, Graefe's Archive for Clinical and Experimental Ophthalmology.

[104]  Jeffrey M. Liebmann,et al.  Detection and measurement of clinically meaningful visual field progression in clinical trials for glaucoma , 2017, Progress in Retinal and Eye Research.

[105]  K. Xue,et al.  Effects of pupil dilation on MAIA microperimetry , 2017, Clinical & experimental ophthalmology.

[106]  G. Rubin,et al.  Test-Retest Reliability of Scotopic and Mesopic Fundus-Controlled Perimetry Using a Modified MAIA (Macular Integrity Assessment) in Normal Eyes , 2016, Ophthalmologica.

[107]  Martin Rubinstein,et al.  Reference Clinical Database for Fixation Stability Metrics in Normal Subjects Measured with the MAIA Microperimeter , 2016, Translational vision science & technology.

[108]  Pete R. Jones,et al.  Feasibility of Macular Integrity Assessment (MAIA) Microperimetry in Children: Sensitivity, Reliability, and Fixation Stability in Healthy Observers. , 2016, Investigative ophthalmology & visual science.

[109]  Andrew Astle,et al.  Spatial Interpolation Enables Normative Data Comparison in Gaze-Contingent Microperimetry. , 2016, Investigative ophthalmology & visual science.

[110]  David J. Wilson,et al.  Test–Retest Variability of Functional and Structural Parameters in Patients with Stargardt Disease Participating in the SAR422459 Gene Therapy Trial , 2016, Translational vision science & technology.

[111]  David J. Wilson,et al.  Test-Retest Variability of Functional and Structural Parameters in patients with ABCA4-related retinopathy , 2016 .

[112]  A. Tsujikawa,et al.  Photoreceptor Damage and Reduction of Retinal Sensitivity Surrounding Geographic Atrophy in Age-Related Macular Degeneration. , 2016, American journal of ophthalmology.

[113]  SriniVas R Sadda,et al.  Retinal Sensitivity at the Junctional Zone of Eyes With Geographic Atrophy Due to Age-Related Macular Degeneration. , 2016, American journal of ophthalmology.

[114]  Steffen Schmitz-Valckenberg,et al.  Correlation of Partial Outer Retinal Thickness With Scotopic and Mesopic Fundus-Controlled Perimetry in Patients With Reticular Drusen. , 2016, American journal of ophthalmology.

[115]  I. MacDonald,et al.  Microperimetry as an Outcome Measure in Choroideremia Trials: Reproducibility and Beyond. , 2016, Investigative ophthalmology & visual science.

[116]  Sina Farsiu,et al.  Longitudinal Associations Between Microstructural Changes and Microperimetry in the Early Stages of Age-Related Macular Degeneration. , 2016, Investigative ophthalmology & visual science.

[117]  J. Crowston,et al.  Test-Retest Variability of Fundus-Tracked Perimetry at the Peripapillary Region in Open Angle Glaucoma. , 2016, Investigative ophthalmology & visual science.

[118]  J. Ledolter,et al.  The Pattern of Visual Fixation Eccentricity and Instability in Optic Neuropathy and Its Spatial Relationship to Retinal Ganglion Cell Layer Thickness , 2016, Investigative ophthalmology & visual science.

[119]  S. Vujosevic,et al.  HYPERREFLECTIVE RETINAL SPOTS AND VISUAL FUNCTION AFTER ANTI-VASCULAR ENDOTHELIAL GROWTH FACTOR TREATMENT IN CENTER-INVOLVING DIABETIC MACULAR EDEMA , 2016, Retina.

[120]  A. V. Cideciyan,et al.  Automated Light- and Dark-Adapted Perimetry for Evaluating Retinitis Pigmentosa: Filling a Need to Accommodate Multicenter Clinical Trials. , 2016, Investigative ophthalmology & visual science.

[121]  A. J. Roman,et al.  Developing an Outcome Measure With High Luminance for Optogenetics Treatment of Severe Retinal Degenerations and for Gene Therapy of Cone Diseases , 2016, Investigative ophthalmology & visual science.

[122]  R. MacLaren,et al.  Selective Automated Perimetry Under Photopic, Mesopic, and Scotopic Conditions: Detection Mechanisms and Testing Strategies , 2016, Translational vision science & technology.

[123]  A. Tsujikawa,et al.  Comparison of Macular Integrity Assessment (MAIA ™), MP-3, and the Humphrey Field Analyzer in the Evaluation of the Relationship between the Structure and Function of the Macula , 2016, PloS one.

[124]  M. Bach,et al.  Visual Acuity Testing: Feedback Affects Neither Outcome nor Reproducibility, but Leaves Participants Happier , 2016, PloS one.

[125]  Allison M McKendrick,et al.  Customizing Structure-Function Displacements in the Macula for Individual Differences. , 2015, Investigative ophthalmology & visual science.

[126]  Sieu K. Khuu,et al.  Standard Automated Perimetry: Determining Spatial Summation and Its Effect on Contrast Sensitivity Across the Visual Field. , 2015, Investigative ophthalmology & visual science.

[127]  Hendrik P N Scholl,et al.  Progression of Vision Loss in Macular Telangiectasia Type 2. , 2015, Investigative ophthalmology & visual science.

[128]  R. MacLaren,et al.  Correlation of retinal structure and function in choroideremia carriers. , 2015, Ophthalmology.

[129]  R. Fimmers,et al.  Scotopic and Photopic Microperimetry in Patients With Reticular Drusen and Age-Related Macular Degeneration. , 2015, JAMA ophthalmology.

[130]  A. V. Cideciyan,et al.  Blue Cone Monochromacy: Visual Function and Efficacy Outcome Measures for Clinical Trials , 2015, PloS one.

[131]  Richard A. Russell,et al.  Latanoprost for open-angle glaucoma (UKGTS): a randomised, multicentre, placebo-controlled trial , 2015, The Lancet.

[132]  L. Ayton,et al.  Test-Retest Repeatability of Microperimetry at the Border of Deep Scotomas. , 2015, Investigative ophthalmology & visual science.

[133]  C. Eandi,et al.  Correlation between fundus autofluorescence and central visual function in chronic central serous chorioretinopathy. , 2015, American journal of ophthalmology.

[134]  M. Smolek,et al.  Compass: Clinical Evaluation of a New Instrument for the Diagnosis of Glaucoma , 2015, PloS one.

[135]  L. Ayton,et al.  Impact of reticular pseudodrusen on microperimetry and multifocal electroretinography in intermediate age-related macular degeneration. , 2015, Investigative ophthalmology & visual science.

[136]  Q. Nguyen,et al.  Fixation Stability Measurement Using Two Types of Microperimetry Devices. , 2015, Translational vision science & technology.

[137]  Chris A Johnson,et al.  VFMA: Topographic Analysis of Sensitivity Data From Full-Field Static Perimetry. , 2015, Translational vision science & technology.

[138]  W. Amoaku,et al.  Bilateral eccentric vision training on pseudovitelliform dystrophy with microperimetry biofeedback , 2015, BMJ Case Reports.

[139]  P. Melillo,et al.  Macular function and morphologic features in juvenile stargardt disease: longitudinal study. , 2014, Ophthalmology.

[140]  Q. Nguyen,et al.  Assessment of Central Retinal Sensitivity Employing Two Types of Microperimetry Devices. , 2014, Translational vision science & technology.

[141]  C. Bunce,et al.  How effective is eccentric viewing training? A systematic literature review , 2014, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[142]  M. V. Cicinelli,et al.  Changes in Macular Function after Ozurdex for Retinal Vein Occlusion , 2014, Optometry and vision science : official publication of the American Academy of Optometry.

[143]  L. Ayton,et al.  Relationship between retinal microstructures on optical coherence tomography and microperimetry in age-related macular degeneration. , 2014, Ophthalmology.

[144]  A. Watson A formula for human retinal ganglion cell receptive field density as a function of visual field location. , 2014, Journal of vision.

[145]  F. Medeiros,et al.  The pathophysiology and treatment of glaucoma: a review. , 2014, JAMA.

[146]  S. Sivaprasad,et al.  A randomized trial to assess functional and structural effects of ranibizumab versus laser in diabetic macular edema (the LUCIDATE study). , 2014, American journal of ophthalmology.

[147]  Austin Roorda,et al.  Mapping the Perceptual Grain of the Human Retina , 2014, The Journal of Neuroscience.

[148]  D. Lavinsky,et al.  DOES MICROPERIMETRY HAVE A PROGNOSTIC VALUE IN CENTRAL SEROUS CHORIORETINOPATHY? , 2014, Retina.

[149]  David P Crabb,et al.  A qualitative investigation into patients’ views on visual field testing for glaucoma monitoring , 2014, BMJ Open.

[150]  S. Trauzettel-Klosinski,et al.  Evaluation of Fixation Pattern and Reading Ability in Patients With Leber Hereditary Optic Neuropathy , 2013, Journal of neuro-ophthalmology : the official journal of the North American Neuro-Ophthalmology Society.

[151]  L. Ayton,et al.  Intrasession test-retest variability of microperimetry in age-related macular degeneration. , 2013, Investigative ophthalmology & visual science.

[152]  Francesca Guidolin,et al.  Microperimetry, fundus autofluorescence, and retinal layer changes in progressing geographic atrophy. , 2013, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[153]  I. Epifanio,et al.  Use of microperimetry to evaluate hydroxychloroquine and chloroquine retinal toxicity. , 2013, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[154]  M. Rubinstein,et al.  Preferred retinal locus profile during prolonged fixation attempts. , 2013, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[155]  M. Crossland,et al.  Relationship between fixation stability measured with MP‐1 and reading performance , 2013, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[156]  Robert N Weinreb,et al.  Accuracy of the Heidelberg Spectralis in the alignment between near-infrared image and tomographic scan in a model eye: a multicenter study. , 2013, American journal of ophthalmology.

[157]  B. Lorenz,et al.  Improving detection of mild loss of retinal light increment sensitivity at the posterior pole with the microperimeter MP1. , 2013, Investigative ophthalmology & visual science.

[158]  Elham Hatef,et al.  Association of retinal sensitivity to integrity of photoreceptor inner/outer segment junction in patients with diabetic macular edema. , 2013, Ophthalmology.

[159]  Emily Y. Chew,et al.  Macular telangiectasia type 2 , 2013, Progress in Retinal and Eye Research.

[160]  E. Vingolo,et al.  MP-1 Biofeedback: Luminous Pattern Stimulus Versus Acoustic Biofeedback in Age Related Macular degeneration (AMD) , 2013, Applied psychophysiology and biofeedback.

[161]  F. Medeiros,et al.  Combining structure and function to evaluate glaucomatous progression: implications for the design of clinical trials. , 2013, Current opinion in pharmacology.

[162]  Catherine Egan,et al.  The IS/OS junction layer in the natural history of type 2 idiopathic macular telangiectasia. , 2012, Investigative ophthalmology & visual science.

[163]  U. Schmidt-Erfurth,et al.  Correlation of SD-OCT features and retinal sensitivity in neovascular age-related macular degeneration. , 2012, Investigative ophthalmology & visual science.

[164]  G. Hageman,et al.  Ultrastructural and clinical evidence of subretinal debris accumulation in type 2 macular telangiectasia , 2012, British Journal of Ophthalmology.

[165]  Y. Mizutani,et al.  Correlation of integrity of cone outer segment tips line with retinal sensitivity after half-dose photodynamic therapy for chronic central serous chorioretinopathy. , 2012, American journal of ophthalmology.

[166]  Johanna M Seddon,et al.  Age-related macular degeneration , 2012, The Lancet.

[167]  D. Garway-Heath,et al.  Intervals between visual field tests when monitoring the glaucomatous patient: wait-and-see approach. , 2012, Investigative ophthalmology & visual science.

[168]  Laurie J. Pencille,et al.  The Chest Pain Choice Decision Aid: A Randomized Trial , 2012, Circulation. Cardiovascular quality and outcomes.

[169]  M. Crossland,et al.  Mesopic Microperimetry Measures Mainly Cones; Dark-adapted Microperimetry Measures Rods And Cones , 2012 .

[170]  L. Matuszewski,et al.  Experimentally induced incomplete burst fractures - a novel technique for calf and human specimens , 2012, BMC Musculoskeletal Disorders.

[171]  F. Medeiros,et al.  Integrating event- and trend-based analyses to improve detection of glaucomatous visual field progression. , 2012, Ophthalmology.

[172]  F. Delori,et al.  Optimization of in vivo confocal autofluorescence imaging of the ocular fundus in mice and its application to models of human retinal degeneration. , 2012, Investigative ophthalmology & visual science.

[173]  C. Osmond,et al.  Microperimetric changes in neovascular age-related macular degeneration treated with ranibizumab , 2012, Eye.

[174]  R. Carr,et al.  STRUCTURAL AND FUNCTIONAL CHANGES ASSOCIATED WITH NORMAL AND ABNORMAL FUNDUS AUTOFLUORESCENCE IN PATIENTS WITH RETINITIS PIGMENTOSA , 2012, Retina.

[175]  T. Aleman,et al.  Macular function in macular degenerations: repeatability of microperimetry as a potential outcome measure for ABCA4-associated retinopathy trials. , 2012, Investigative ophthalmology & visual science.

[176]  Kathrin I Hartmann,et al.  SCANNING LASER OPHTHALMOSCOPE IMAGING STABILIZED MICROPERIMETRY IN DRY AGE-RELATED MACULAR DEGENERATION , 2011, Retina.

[177]  Donald C. Hood,et al.  Method for deriving visual field boundaries from OCT scans of patients with retinitis pigmentosa , 2011, Biomedical optics express.

[178]  L. da Cruz,et al.  NIDEK MP1 IS ABLE TO DETECT SUBTLE DECLINE IN FUNCTION IN INHERITED AND AGE-RELATED ATROPHIC MACULAR DISEASE WITH STABLE VISUAL ACUITY , 2011, Retina.

[179]  E. Agrón,et al.  Changes in retinal sensitivity in geographic atrophy progression as measured by microperimetry. , 2011, Investigative ophthalmology & visual science.

[180]  M. Crossland,et al.  Task-specific fixation behavior in macular disease. , 2011, Investigative ophthalmology & visual science.

[181]  Edoardo Midena,et al.  Diabetic macular edema: fundus autofluorescence and functional correlations. , 2011, Investigative ophthalmology & visual science.

[182]  R. Anderson,et al.  The effect of age on the area of complete spatial summation for chromatic and achromatic stimuli. , 2010, Investigative ophthalmology & visual science.

[183]  U. Schmidt-Erfurth,et al.  A systematic correlation between morphology and functional alterations in diabetic macular edema. , 2010, Investigative ophthalmology & visual science.

[184]  M. Crossland,et al.  Fixation stability: a comparison between the Nidek MP-1 and the Rodenstock scanning laser ophthalmoscope in persons with and without diabetic maculopathy. , 2010, Investigative ophthalmology & visual science.

[185]  S. Vujosevic,et al.  Normal values for fundus perimetry with the microperimeter MP1. , 2010, Ophthalmology.

[186]  K. Woodward,et al.  The effective dynamic ranges of standard automated perimetry sizes III and V and motion and matrix perimetry. , 2010, Archives of ophthalmology.

[187]  S. Vujosevic,et al.  Static and dynamic retinal fixation stability in microperimetry. , 2010, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[188]  Richard B Rosen,et al.  INNER SEGMENT–OUTER SEGMENT JUNCTIONAL LAYER INTEGRITY AND CORRESPONDING RETINAL SENSITIVITY IN DRY AND WET FORMS OF AGE-RELATED MACULAR DEGENERATION , 2010, Retina.

[189]  D. Squirrell,et al.  VISUAL OUTCOME AFTER INTRAVITREAL RANIBIZUMAB FOR WET AGE-RELATED MACULAR DEGENERATION: A Comparison Between Best-Corrected Visual Acuity and Microperimetry , 2010, Retina.

[190]  Stanley E Lazic,et al.  The problem of pseudoreplication in neuroscientific studies: is it affecting your analysis? , 2010, BMC Neuroscience.

[191]  U. Schmidt-Erfurth,et al.  Association of retinal sensitivity and morphology during antiangiogenic treatment of retinal vein occlusion over one year. , 2009, Ophthalmology.

[192]  Esther G González,et al.  Plasticity of fixation in patients with central vision loss , 2009, Visual Neuroscience.

[193]  G. Rubin,et al.  STRUCTURAL AND FUNCTIONAL CHANGES OVER TIME IN MacTel PATIENTS , 2009, Retina.

[194]  U. Schmidt-Erfurth,et al.  Morphological and functional analysis of the loading regimen with intravitreal ranibizumab in neovascular age-related macular degeneration , 2009, British Journal of Ophthalmology.

[195]  G. Rubin,et al.  Test-retest variability of microperimetry using the Nidek MP1 in patients with macular disease. , 2009, Investigative ophthalmology & visual science.

[196]  H. Rootzén,et al.  An improved method to estimate frequency of false positive answers in computerized perimetry. , 2009, Acta ophthalmologica Scandinavica.

[197]  U. Schmidt-Erfurth,et al.  Interexaminer and intraexaminer reliability of the microperimeter MP-1 , 2009, Eye.

[198]  E. Vingolo,et al.  Low-Vision Rehabilitation by Means of MP-1 Biofeedback Examination in Patients with Different Macular Diseases: A Pilot Study , 2009, Applied psychophysiology and biofeedback.

[199]  Robert N Weinreb,et al.  The glaucoma research community and FDA look to the future: a report from the NEI/FDA CDER Glaucoma Clinical Trial Design and Endpoints Symposium. , 2009, Investigative ophthalmology & visual science.

[200]  A. J. Roman,et al.  ABCA4 disease progression and a proposed strategy for gene therapy. , 2009, Human molecular genetics.

[201]  A. Negi,et al.  Positive association of common variants in CD36 with neovascular age-related macular degeneration , 2009, Aging.

[202]  T. Wakabayashi,et al.  Correlation of fundus autofluorescence with photoreceptor morphology and functional changes in eyes with retinitis pigmentosa , 2009, Acta ophthalmologica.

[203]  S. Vujosevic,et al.  RETINAL FIXATION IMPAIRMENT IN DIABETIC MACULAR EDEMA , 2008, Retina.

[204]  G. Rubin,et al.  Foveal-Sparing Scotomas in Advanced Dry Age-Related Macular Degeneration , 2008, Journal of visual impairment & blindness.

[205]  Edwin M Stone,et al.  Human gene therapy for RPE65 isomerase deficiency activates the retinoid cycle of vision but with slow rod kinetics , 2008, Proceedings of the National Academy of Sciences.

[206]  K. Rohrschneider,et al.  Use of fundus perimetry (microperimetry) to quantify macular sensitivity , 2008, Progress in Retinal and Eye Research.

[207]  U. Schmidt-Erfurth,et al.  CHANGES IN RETINAL SENSITIVITY IN PATIENTS WITH NEOVASCULAR AGE-RELATED MACULAR DEGENERATION AFTER SYSTEMIC BEVACIZUMAB (AVASTIN) THERAPY , 2008, Retina.

[208]  F. Holz,et al.  Discrete arcs of increased fundus autofluorescence in retinal dystrophies and functional correlate on microperimetry , 2008, Eye.

[209]  G. Rubin,et al.  Correlation of functional impairment and morphological alterations in patients with group 2A idiopathic juxtafoveal retinal telangiectasia. , 2008, Archives of ophthalmology.

[210]  N. Drasdo,et al.  The length of Henle fibers in the human retina and a model of ganglion receptive field density in the visual field , 2007, Vision Research.

[211]  Cynthia Owsley,et al.  Cone- and rod-mediated dark adaptation impairment in age-related maculopathy. , 2007, Ophthalmology.

[212]  P. Charbel Issa,et al.  Microperimetric assessment of patients with type 2 idiopathic macular telangiectasia. , 2007, Investigative ophthalmology & visual science.

[213]  D. Domanico,et al.  Microperimetric Biofeedback in AMD Patients , 2007, Applied psychophysiology and biofeedback.

[214]  H. J. Wyatt,et al.  Variability of visual field measurements is correlated with the gradient of visual sensitivity , 2007, Vision Research.

[215]  H. Völcker,et al.  Chorioretinopathia centralis serosa – Netzhautfunktion und -morphologie , 2006, Der Ophthalmologe.

[216]  K. Rohrschneider,et al.  [Central serous chorioretinopathy--retinal function and morphology: microperimetry and optical coherence tomography]. , 2006, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[217]  S. Vujosevic,et al.  Diabetic macular edema: correlation between microperimetry and optical coherence tomography findings. , 2006, Investigative ophthalmology & visual science.

[218]  V. Maritan,et al.  Peripapillary fundus perimetry in eyes with glaucoma , 2006, British Journal of Ophthalmology.

[219]  R. Anderson The psychophysics of glaucoma: Improving the structure/function relationship , 2006, Progress in Retinal and Eye Research.

[220]  T. Aleman,et al.  ABCA4-associated retinal degenerations spare structure and function of the human parapapillary retina. , 2005, Investigative ophthalmology & visual science.

[221]  Michael D Crossland,et al.  Preferred retinal locus development in patients with macular disease. , 2005, Ophthalmology.

[222]  U. Schiefer,et al.  [Conventional perimetry I: introduction--basics]. , 2005, Der Ophthalmologe : Zeitschrift der Deutschen Ophthalmologischen Gesellschaft.

[223]  Klaus Rohrschneider,et al.  Fundus perimetry with the Micro Perimeter 1 in normal individuals: comparison with conventional threshold perimetry. , 2005, Ophthalmology.

[224]  A. Elsner,et al.  Blue on yellow perimetry with scanning laser ophthalmoscopy in patients with age related macular disease , 2005, British Journal of Ophthalmology.

[225]  Paula J. Durlach,et al.  Change Blindness and Its Implications for Complex Monitoring and Control Systems Design and Operator Training , 2004, Hum. Comput. Interact..

[226]  J. Dreyhaupt,et al.  Fundus autofluorescence and fundus perimetry in the junctional zone of geographic atrophy in patients with age-related macular degeneration. , 2004, Investigative ophthalmology & visual science.

[227]  Michael D Crossland,et al.  Fixation stability and reading speed in patients with newly developed macular disease * , 2004, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[228]  M. Crossland,et al.  Evaluation of a new quantitative technique to assess the number and extent of preferred retinal loci in macular disease , 2004, Vision Research.

[229]  T. Lamb,et al.  Dark adaptation and the retinoid cycle of vision , 2004, Progress in Retinal and Eye Research.

[230]  M. Crossland,et al.  Fixation stability using central and pericentral fixation targets in patients with age-related macular degeneration. , 2004, Ophthalmology.

[231]  A. Bird,et al.  Photopic and scotopic fine matrix mapping of retinal areas of increased fundus autofluorescence in patients with age-related maculopathy. , 2004, Investigative ophthalmology & visual science.

[232]  M. Simunovic,et al.  How Well Does Color Perimetry Isolate Responses from Individual Cone Mechanisms? , 2004, Journal of glaucoma.

[233]  Chris A. Johnson,et al.  Properties of perimetric threshold estimates from full threshold, ZEST, and SITA-like strategies, as determined by computer simulation. , 2003, Investigative ophthalmology & visual science.

[234]  A. Bird,et al.  Pattern ERG correlates of abnormal fundus autofluorescence in patients with retinitis pigmentosa and normal visual acuity. , 2003, Investigative ophthalmology & visual science.

[235]  U. Schmidt-Erfurth,et al.  Changes in confocal indocyanine green angiography through two years after photodynamic therapy with verteporfin. , 2003, Ophthalmology.

[236]  M. Varano,et al.  Fixation pattern and macular sensitivity in eyes with subfoveal choroidal neovascularization secondary to age-related macular degeneration. A microperimetry study , 2003, Seminars in ophthalmology.

[237]  Mark S Humayun,et al.  Patient selection for macular translocation surgery using the scanning laser ophthalmoscope. , 2002, Ophthalmology.

[238]  Yuko Ohno,et al.  Properties of perimetric threshold estimates from Full Threshold, SITA Standard, and SITA Fast strategies. , 2002, Investigative ophthalmology & visual science.

[239]  A. J. Morandi,et al.  Blue-on-yellow perimetry with a scanning laser ophthalmoscope: small alterations in the central macula with aging. , 2001, Journal of the Optical Society of America. A, Optics, image science, and vision.

[240]  A. Stockman,et al.  The spectral sensitivities of the middle- and long-wavelength-sensitive cones derived from measurements in observers of known genotype , 2000, Vision Research.

[241]  Chris A. Johnson,et al.  Isolation of Short‐wavelength Sensitive Mechanisms in Normal and Glaucomatous Visual Field Regions , 2000, Journal of glaucoma.

[242]  J. Sjöstrand,et al.  Morphometric study of the displacement of retinal ganglion cells subserving cones within the human fovea , 1999, Graefe's Archive for Clinical and Experimental Ophthalmology.

[243]  A. Safran,et al.  Combined use of several preferred retinal loci in patients with macular disorders when reading single words , 1999, Vision Research.

[244]  R A Schuchard,et al.  Using two preferred retinal loci for different lighting conditions in patients with central scotomas. , 1997, Investigative ophthalmology & visual science.

[245]  R. Schuchard,et al.  Preferred retinal loci relationship to macular scotomas in a low-vision population. , 1997, Ophthalmology.

[246]  G. Rubin,et al.  Fixation patterns and reading rates in eyes with central scotomas from advanced atrophic age-related macular degeneration and Stargardt disease. , 1996, Ophthalmology.

[247]  F. Kruse,et al.  Static fundus perimetry using the scanning laser ophthalmoscope with an automated threshold strategy , 1995, Graefe's Archive for Clinical and Experimental Ophthalmology.

[248]  R A Schuchard,et al.  Landmark-driven fundus perimetry using the scanning laser ophthalmoscope. , 1995, Investigative ophthalmology & visual science.

[249]  H. Völcker,et al.  Kinetische funduskontrollierte Perimetrie mit dem Scanning-Laser-Ophthalmoskop* , 1995 .

[250]  Andreas Plesch,et al.  Optical Characteristics Of A Scanning Laser Ophthalmoscope , 1989, Optics & Photonics.

[251]  Mary A. Johnson,et al.  Retinal sensitivity over drusen and nondrusen areas. A study using fundus perimetry. , 1988, Archives of ophthalmology.

[252]  C. Johnson,et al.  Fatigue effects in automated perimetry. , 1988, Applied optics.

[253]  E Peli,et al.  Reading with a macular scotoma. II. Retinal locus for scanning text. , 1987, Investigative ophthalmology & visual science.

[254]  R W Massof,et al.  Wilmer fundus camera stimulator. , 1987, Applied optics.

[255]  S. Jacobson,et al.  Automated light- and dark-adapted perimetry for evaluating retinitis pigmentosa. , 1986, Ophthalmology.

[256]  R. Radius,et al.  Background illumination and automated perimetry. , 1986, Archives of ophthalmology.

[257]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[258]  S. Whittaker,et al.  Scanning characters and reading with a central scotoma. , 1985, American journal of optometry and physiological optics.

[259]  J Flammer,et al.  Quantification of glaucomatous visual field defects with automated perimetry. , 1985, Investigative ophthalmology & visual science.

[260]  Vaegan,et al.  An automated statis perimeter/adaptometer using light emitting diodes. , 1983, The British journal of ophthalmology.

[261]  Robert H. Webb,et al.  Scanning Laser Ophthalmoscope , 1981, IEEE Transactions on Biomedical Engineering.

[262]  C. Krakau,et al.  AN AUTOMATIC STATIC PERIMETER, DESIGN AND PILOT STUDY , 1975, Acta ophthalmologica.

[263]  R. Watzke,et al.  Subjective slitbeam sign for macular disease. , 1969, American journal of ophthalmology.

[264]  A. Fuchs Saccadic and smooth pursuit eye movements in the monkey , 1967, The Journal of physiology.

[265]  E. Aulhorn,et al.  Early Visual Field Defects in Glaucoma , 1967 .

[266]  R. Steinman Effect of Target Size, Luminance, and Color on Monocular Fixation* , 1965 .

[267]  G. K. Noorden,et al.  Phenomenology of eccentric fixation. , 1962, American journal of ophthalmology.

[268]  M. P. Meyers The use of the visuscope; for mapping a field of retinal function. , 1959, American journal of ophthalmology.

[269]  H. Goldmann,et al.  Grundlagen exakter Perimetrie , 1945 .

[270]  G Wald,et al.  HUMAN VISION AND THE SPECTRUM. , 1945, Science.

[271]  L. L. Sloan INSTRUMENTS AND TECHNICS FOR THE CLINICAL TESTING OF LIGHT SENSE: IV. SIZE OF PUPIL AS A VARIABLE FACTOR IN THE DETERMINATION OF THE LIGHT MINIMUM , 1940 .

[272]  L. L. Sloan INSTRUMENTS AND TECHNICS FOR THE CLINICAL TESTING OF LIGHT SENSE: I. REVIEW OF THE RECENT LITERATURE , 1939 .

[273]  C. E. Ferree,et al.  An illuminated perimeter with campimeter features , 1922 .

[274]  Aubert,et al.  Untersuchungen über den Raumsinn der Retina , 1857, Archiv für Ophthalmologie.

[275]  B. Wilhelm,et al.  CHANGES IN RETINAL SENSITIVITY AFTER GENE THERAPY IN CHOROIDEREMIA. , 2018, Retina.

[276]  A. Roorda,et al.  Ultra-high contrast retinal display system for single photoreceptor psychophysics. , 2018, Biomedical optics express.

[277]  K. Xue,et al.  Multidisciplinary Ophthalmic Imaging Characterizing the Natural History of Visual Function in Choroideremia Using Microperimetry and Multimodal Retinal Imaging , 2017 .

[278]  Kanmin Xue,et al.  Effects of pupil dilation on MAIA microperimetry , 2016 .

[279]  D. Mackey,et al.  Inter‐device comparison of retinal sensitivity measurements: the CenterVue MAIA and the Nidek MP‐1 , 2016, Clinical & experimental ophthalmology.

[280]  B. Chauhan,et al.  How to detect progression in glaucoma. , 2015, Progress in brain research.

[281]  Sieu K. Khuu,et al.  Spatial summation across the central visual field: implications for visual field testing. , 2015, Journal of vision.

[282]  E. Midena Microperimetry and multimodal retinal imaging , 2014 .

[283]  Michael D. Crossland,et al.  Retinal Fixation and Microperimetry , 2014 .

[284]  Maja O’Connor,et al.  A Longitudinal Study , 2013 .

[285]  D. M. ! BENEFICIAL EFFECTS OF , 2012 .

[286]  S. Pautler Diabetic Macular Ischemia , 2010 .

[287]  J. Sunness What you see is not always what you get in atrophic macular disease. , 2008, Retinal cases & brief reports.

[288]  H. Weng,et al.  Supplementary Appendix , 2007 .

[289]  A. Graefe,et al.  Ueber die Untersuchung des Gesichtsfeldes bei amblyopischen Affectionen , 2007, Archiv für Ophthalmologie.

[290]  U. Schiefer,et al.  Konventionelle Perimetrie , 2005, Der Ophthalmologe.

[291]  H. Harms,et al.  Die lichtunterschiedsempfindlichkeit als funktion der umfeldleuchtdichte , 2004, Documenta Ophthalmologica.

[292]  S. E. Williams,et al.  the Effect of , 2004 .

[293]  F. Kruse,et al.  Scanning laser ophthalmoscope fundus perimetry before and after laser photocoagulation for clinically significant diabetic macular edema. , 2000, American journal of ophthalmology.

[294]  P. Boyle,et al.  Pathophysiology and Treatment , 2000 .

[295]  R. Burk,et al.  AUTOMATIC STATIC FUNDUS PERIMETRY FOR PRECISE DETECTION OF EARLY GLAUCOMATOUS FUNCTION LOSS , 1999 .

[296]  H. Wildberger,et al.  Visual fatigue during prolonged visual field testing in optic neuropathies , 1988 .

[297]  Georg Lindgren,et al.  A package for the statistical analysis of visual fields , 1987 .

[298]  Georg Lindgren,et al.  Reliability parameters in computerized perimetry , 1987 .

[299]  C L Trempe,et al.  Retinal localization of scotomata by scanning laser ophthalmoscopy. , 1982, Investigative ophthalmology & visual science.

[300]  Kazutaka Kani,et al.  Fundus Controlled Perimetry , 1979 .

[301]  F Fankhauser,et al.  [Automation of perimetry]. , 1975, Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde.

[302]  H. Goldmann Demonstration unseres neuen Projektionskugelperimeters samt theoretischen und klinischen Bemerkungen über Perimetrie , 1946 .

[303]  H. Helmholtz Beschreibung eines Augen-Spiegels zur Untersuchung der Netzhaut im lebenden Auge , 1851 .