Asymmetric supercapacitors based on porous MnMoS4 nanosheets-anchored carbon nanofiber and N, S-doped carbon nanofiber electrodes

[1]  D. Yang,et al.  MnMoO4 nanorods-encapsulated carbon nanofibers hybrid mat as binder-free electrode for flexible asymmetric supercapacitors , 2021, Materials Science in Semiconductor Processing.

[2]  D. Yang,et al.  Flexible nickel disulfide nanoparticles-anchored carbon nanofiber hybrid mat as a flexible binder-free cathode for solid-state asymmetric supercapacitors , 2021, Nanotechnology.

[3]  B. Dong,et al.  A multidimensional rational design of nickel-iron sulfide and carbon nanotubes on diatomite via synergistic modulation strategy for supercapacitors. , 2021, Journal of colloid and interface science.

[4]  Boyang Hu,et al.  Amorphous CoSx nanoparticles anchoring onto N-doped carbon nanotubes as high-performance electrodes for hybrid supercapacitors , 2021 .

[5]  Tingfeng Yi,et al.  Approaching high-performance electrode materials of ZnCo2S4 nanoparticle wrapped carbon nanotubes for supercapacitors , 2021 .

[6]  Min Fu,et al.  Growth of MnCo2O4 hollow nano-spheres on activated carbon cloth for flexible asymmetric supercapacitors , 2021 .

[7]  S. Shahrokhian,et al.  3D flower-like nickel cobalt sulfide directly decorated grassy nickel sulfide and encapsulated iron in carbon sphere hosts as hybrid energy storage device , 2021 .

[8]  Seok‐In Na,et al.  Ultrathin ternary metal oxide Bi2MoO6 nanosheets for high performance asymmetric supercapacitor and gas sensor applications , 2021 .

[9]  K. Krishnamoorthy,et al.  Electrochemical deposition of vertically aligned tellurium nanorods on flexible carbon cloth for wearable supercapacitors , 2021 .

[10]  S. Shahrokhian,et al.  Direct fabrication of phosphorus-doped nickel sulfide and eco-friendly biomass-derived humic acid as efficient electrodes for energy storage applications , 2021, Sustainable Energy & Fuels.

[11]  Zhengbing Qi,et al.  All nitride asymmetric supercapacitors of niobium titanium nitride-vanadium nitride , 2021 .

[12]  Huiyu Chen,et al.  A review on the synthesis of CuCo2O4-based electrode materials and their applications in supercapacitors , 2021 .

[13]  S. Alipour,et al.  Two-step in-situ hydrothermal synthesis of nanosheet-constructed porous MnMoS4 arrays on 3D Ni foam as a binder-free electrode in high-performance supercapacitors , 2020 .

[14]  S. Dhlamini,et al.  Recent advances on the preparation and electrochemical analysis of MoS2-based materials for supercapacitor applications: A mini-review , 2020 .

[15]  R. Chandra,et al.  A High‐Performing Asymmetric Supercapacitor of Molybdenum Nitride and Vanadium Nitride Thin Films as Binder‐Free Electrode Grown through Reactive Sputtering , 2020 .

[16]  Kuan Li,et al.  Design and construction of nickel-cobalt-sulfide nanoparticles in-situ grown on graphene with enhanced performance for asymmetric supercapacitors , 2020 .

[17]  Xintang Huang,et al.  Cobalt Nanorods as Transition Metal Electrode Materials for Asymmetric Supercapacitor Applications , 2020 .

[18]  Yafei Zhang,et al.  Inkjet-Printed Ultrathin MoS2-Based Electrodes for Flexible In-Plane Micro-Supercapacitors. , 2020, ACS applied materials & interfaces.

[19]  Seung Jun Lee,et al.  Recent progress and emerging challenges of transition metal sulfides based composite electrodes for electrochemical supercapacitive energy storage , 2020 .

[20]  Pravin P Ingole,et al.  Challenges and prospects of metal sulfide materials for supercapacitors , 2020 .

[21]  Jiaguo Yu,et al.  Construction of nickel cobalt sulfide nanosheet arrays on carbon cloth for performance-enhanced supercapacitor , 2020, Journal of Materials Science & Technology.

[22]  Bo Zhao,et al.  Synthesis of temperature-dependent Mn3O4 nanowires for asymmetric supercapacitor cell , 2020, Journal of Applied Electrochemistry.

[23]  Jinyuan Zhou,et al.  Microstructure Design of Carbonaceous Fibers: A Promising Strategy toward High-Performance Weaveable/Wearable Supercapacitors. , 2020, Small.

[24]  Nick Hillier,et al.  The good, the bad and the porous: A review of carbonaceous materials for flexible supercapacitor applications , 2020 .

[25]  Xin Wang,et al.  Unique hollow-concave CoMoSx boxes with abundant mesoporous structure for high-performance hybrid supercapacitors , 2020 .

[26]  Nageh K. Allam,et al.  N-doped carbon quantum dots boost the electrochemical supercapacitive performance and cyclic stability of MoS2 , 2020 .

[27]  Chenguo Hu,et al.  A fast composite-hydroxide-mediated approach for synthesis of 2D-LiCoO2 for high performance asymmetric supercapacitor , 2020 .

[28]  S. K. Tripathi,et al.  Facile synthesis of NiCo2O4 quantum dots for asymmetric supercapacitor , 2020 .

[29]  Kiyoung Lee,et al.  Insights into the interfacial nanostructuring of NiCo2S4 and their electrochemical activity for ultra-high capacity all-solid-state flexible asymmetric supercapacitors. , 2019, Journal of colloid and interface science.

[30]  S. Jun,et al.  Phosphorus dual-site driven CoS2@S, N co-doped porous carbon nanosheets for flexible quasi-solid-state supercapacitors , 2019, Journal of Materials Chemistry A.

[31]  N. C. Murmu,et al.  Development of carbon coated NiS2 as positive electrode material for high performance asymmetric supercapacitor , 2019, Composites Part B: Engineering.

[32]  A. Faid,et al.  Ternary mixed nickel cobalt iron oxide nanorods as a high-performance asymmetric supercapacitor electrode , 2019, Materials Today Energy.

[33]  N. Zhang,et al.  High Performance Flexible Solid-State Asymmetric Supercapacitors Based on Bi-Metallic Transition Metal Phosphide Nanocrystals. , 2019, ACS nano.

[34]  Lang Xu,et al.  Template-free preparation of anthracite-based nitrogen-doped porous carbons for high-performance supercapacitors and efficient electrocatalysts for the oxygen reduction reaction , 2019, RSC advances.

[35]  S. Shahrokhian,et al.  High-Performance, Flexible, All-Solid-State Wire-Shaped Asymmetric Micro-Supercapacitors Based on Three Dimensional CoNi2S4 Nanosheets Decorated–Nanoporous Ni–Zn–P Film/Cu Wire , 2019, The Journal of Physical Chemistry C.

[36]  Poulomi Roy,et al.  In situ growth of Co3O4 nanoflakes on reduced graphene oxide-wrapped Ni-foam as high performance asymmetric supercapacitor , 2019, Electrochimica Acta.

[37]  K. Krishnamoorthy,et al.  Nanostructured ternary metal chalcogenide-based binder-free electrodes for high energy density asymmetric supercapacitors , 2019, Nano Energy.

[38]  K. Xiao,et al.  In situ evolution of the active phase on stainless steel mesh toward a cost-effective bifunctional electrode for energy storage and conversion. , 2019, Chemical communications.

[39]  K. Ashok Kumar,et al.  Effect of Bi-functional Hierarchical Flower-like CoS Nanostructure on its Interfacial Charge Transport Kinetics, Magnetic and Electrochemical Behaviors for Supercapacitor and DSSC Applications , 2019, Scientific Reports.

[40]  Lili Wu,et al.  Annealing temperature dependent ZnCo2O4 nanosheet arrays supported on Ni foam for high-performance asymmetric supercapacitor , 2019, Journal of Alloys and Compounds.

[41]  Y. Tong,et al.  Enhancing the Capacitive Storage Performance of Carbon Fiber Textile by Surface and Structural Modulation for Advanced Flexible Asymmetric Supercapacitors , 2018, Advanced Functional Materials.

[42]  Qingyun Chen,et al.  Hierarchical porous NiCo2O4/CeO2 hybrid materials for high performance supercapacitors , 2018 .

[43]  Wenbing Shi,et al.  Hierarchical MnS2-MoS2 nanotubes with efficient electrochemical performance for energy storage , 2018, Materials & Design.

[44]  I. Parkin,et al.  Sulfur-Deficient Bismuth Sulfide/Nitrogen-Doped Carbon Nanofibers as Advanced Free-Standing Electrode for Asymmetric Supercapacitors. , 2018, Small.

[45]  K. Krishnamoorthy,et al.  Copper molybdenum sulfide: A novel pseudocapacitive electrode material for electrochemical energy storage device , 2018, International Journal of Hydrogen Energy.

[46]  Liu Yang,et al.  Synthesis of NiMoSO/rGO Composites Based on NiMoO4 and Reduced Graphene with High-Performance Electrochemical Electrodes , 2018, ChemistrySelect.

[47]  Jeng-Yu Lin,et al.  Morphology-controlled synthesis of nanosphere-like NiCo2S4 as cathode materials for high-rate asymmetric supercapacitors , 2018, Electrochimica Acta.

[48]  F. Besenbacher,et al.  One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors , 2018 .

[49]  Shasha Zheng,et al.  Transition Metal Sulfides Based on Graphene for Electrochemical Energy Storage , 2018 .

[50]  K. Ye,et al.  Ternary Transition Metal Sulfides Embedded in Graphene Nanosheets as Both the Anode and Cathode for High-Performance Asymmetric Supercapacitors , 2018 .

[51]  Guohua Jiang,et al.  Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors , 2018 .

[52]  F. Pan,et al.  Optimized mesopores enabling enhanced rate performance in novel ultrahigh surface area meso-/microporous carbon for supercapacitors , 2017 .

[53]  Ji Hoon Kim,et al.  Nitrogen-Enriched Porous Carbon Nanofiber Mat as Efficient Flexible Electrode Material for Supercapacitors , 2017 .

[54]  Umakant M. Patil,et al.  A binder free synthesis of 1D PANI and 2D MoS2 nanostructured hybrid composite electrodes by the electrophoretic deposition (EPD) method for supercapacitor application , 2016 .

[55]  D. J. Yang,et al.  Facile synthesis of self-standing binder-free vanadium pentoxide-carbon nanofiber composites for high-performance supercapacitors , 2016 .

[56]  Tiefeng Liu,et al.  Facile controlled synthesis of a hierarchical porous nanocoral-like Co3S4 electrode for high-performance supercapacitors , 2016 .

[57]  Y. Tong,et al.  Recent progress in the development of anodes for asymmetric supercapacitors , 2016 .

[58]  Xiaohong Zhu,et al.  NiCo2S4 nanoparticles//activated balsam pear pulp for asymmetric hybrid capacitors , 2016 .

[59]  Litao Sun,et al.  Elemental superdoping of graphene and carbon nanotubes , 2016, Nature Communications.

[60]  William W. Yu,et al.  Synthesis of Nitrogen and Sulfur Co-doped Carbon Dots from Garlic for Selective Detection of Fe3+ , 2016, Nanoscale Research Letters.

[61]  C. R. Raj,et al.  Hierarchical three-dimensional mesoporous MnO2 nanostructures for high performance aqueous asymmetric supercapacitors , 2016 .

[62]  Patryk Przygocki,et al.  Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors , 2015 .

[63]  Muhamed Shareef Kolathodi,et al.  Electrospun NiO nanofibers as cathode materials for high performance asymmetric supercapacitors , 2015 .

[64]  Bin Zhao,et al.  Facile Synthesis of Hematite Quantum‐Dot/Functionalized Graphene‐Sheet Composites as Advanced Anode Materials for Asymmetric Supercapacitors , 2015 .

[65]  Xiaofeng Wang,et al.  Facile synthesis route of porous MnCo2O4 and CoMn2O4 nanowires and their excellent electrochemical properties in supercapacitors , 2014 .

[66]  Gareth R Williams,et al.  Hierarchical NiAl layered double hydroxide/multiwalled carbon nanotube/nickel foam electrodes with excellent pseudocapacitive properties. , 2014, ACS applied materials & interfaces.

[67]  R. Ruoff,et al.  Graphene and Graphene Oxide: Synthesis, Properties, and Applications , 2010, Advanced materials.