Bidirectional, Activity-Dependent Regulation of Glutamate Receptors in the Adult Hippocampus In Vivo

[1]  Samuel Bogoch,et al.  The biochemistry of memory , 1968 .

[2]  L. Voronin,et al.  Long-term potentiation in the hippocampus , 1983, Neuroscience.

[3]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[4]  R. J. Williams,et al.  Biochemical characterization of a filtered synaptoneurosome preparation from guinea pig cerebral cortex: cyclic adenosine 3':5'-monophosphate- generating systems, receptors, and enzymes , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[5]  G Lynch,et al.  Long-term potentiation differentially affects two components of synaptic responses in hippocampus. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[6]  W. Abraham,et al.  Effects of the NMDA receptor/channel antagonists CPP and MK801 on hippocampal field potentials and long-term potentiation in anesthetized rats , 1988, Brain Research.

[7]  R. Nicoll,et al.  A persistent postsynaptic modification mediates long-term potentiation in the hippocampus , 1988, Neuron.

[8]  R. Hampson,et al.  Hippocampal place cells: stereotypy and plasticity , 1989, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[9]  R. Wenthold,et al.  Localization of AMPA receptors in the hippocampus and cerebellum of the rat using an anti-receptor monoclonal antibody , 1992, Neuroscience.

[10]  T. Bliss,et al.  A synaptic model of memory: long-term potentiation in the hippocampus , 1993, Nature.

[11]  G Tocco,et al.  Postsynaptic factors in the expression of long-term potentiation (LTP): increased glutamate receptor binding following LTP induction in vivo. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[12]  SM Dudek,et al.  Bidirectional long-term modification of synaptic effectiveness in the adult and immature hippocampus , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[13]  R. Malenka,et al.  An essential role for protein phosphatases in hippocampal long-term depression. , 1993, Science.

[14]  B L McNaughton,et al.  Dynamics of the hippocampal ensemble code for space. , 1993, Science.

[15]  C. Stevens,et al.  Changes in reliability of synaptic function as a mechanism for plasticity , 1994, Nature.

[16]  G. Barrionuevo,et al.  Excitatory stimulation during postsynaptic inhibition induces long-term depression in hippocampus in vivo. , 1994, Journal of neurophysiology.

[17]  B L McNaughton,et al.  LTP saturation and spatial learning disruption: effects of task variables and saturation levels , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[18]  R. Wenthold,et al.  Light and electron microscope distribution of the NMDA receptor subunit NMDAR1 in the rat nervous system using a selective anti-peptide antibody , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[19]  H. Wigström,et al.  Long‐term Depression in the Hippocampal CA1 Region is Associated with Equal Changes in AMPA and NMDA Receptor‐mediated Synaptic Potentials , 1994, The European journal of neuroscience.

[20]  M. Mishina,et al.  Structure and function of the NMDA receptor channel , 1995, Neuropharmacology.

[21]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[22]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[23]  L. Cooper How We Learn; How We Remember: Toward an Understanding of Brain and Neural Systems : Selected Papers of Leon N. Cooper , 1995 .

[24]  Robert C. Malenka,et al.  Independent mechanisms for long-term depression of AMPA and NMDA responses , 1995, Neuron.

[25]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[26]  R. Nicoll,et al.  Bidirectional Control of Quantal Size by Synaptic Activity in the Hippocampus , 1996, Science.

[27]  M. Bear,et al.  A synaptic basis for memory storage in the cerebral cortex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Bear,et al.  Long-term depression in hippocampus. , 1996, Annual review of neuroscience.

[29]  R. Wenthold,et al.  Evidence for multiple AMPA receptor complexes in hippocampal CA1/CA2 neurons , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[30]  Mark F. Bear,et al.  Bidirectional modification of CA1 synapses in the adult hippocampus in vivo , 1996, Nature.

[31]  S. Hunt,et al.  Alterations in the expression of specific glutamate receptor subunits following hippocampal LTP in vivo. , 1996, Learning & memory.

[32]  Denise Manahan-Vaughan,et al.  Group 1 and 2 Metabotropic Glutamate Receptors Play Differential Roles in Hippocampal Long-Term Depression and Long-Term Potentiation in Freely Moving Rats , 1997, The Journal of Neuroscience.

[33]  Nancy R. Zahniser,et al.  Maintenance of late-phase LTP is accompanied by PKA-dependent increase in AMPA receptor synthesis , 1998, Nature.

[34]  E Thiels,et al.  Transient and persistent increases in protein phosphatase activity during long-term depression in the adult hippocampus in vivo , 1998, Neuroscience.

[35]  W. Abraham,et al.  Biphasic changes in the levels of N-methyl-D-aspartate receptor-2 subunits correlate with the induction and persistence of long-term potentiation. , 1998, Brain research. Molecular brain research.

[36]  Lawrence C. Katz,et al.  Focal photolysis of caged glutamate produces long-term depression of hippocampal glutamate receptors , 1998, Nature Neuroscience.

[37]  M. Baudry,et al.  Phosphorylation regulates calpain-mediated truncation of glutamate ionotropic receptors , 1998, Brain Research.

[38]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[39]  Richard L. Huganir,et al.  Regulation of morphological postsynaptic silent synapses in developing hippocampal neurons , 1999, Nature Neuroscience.

[40]  M. Bear,et al.  Bidirectional, experience-dependent regulation of N-methyl-D-aspartate receptor subunit composition in the rat visual cortex during postnatal development. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[41]  Andreas Lüthi,et al.  Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction , 1999, Neuron.

[42]  Mark F. Bear,et al.  Rapid, experience-dependent expression of synaptic NMDA receptors in visual cortex in vivo , 1999, Nature Neuroscience.

[43]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[44]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[45]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[46]  R. Nicoll,et al.  Synaptic plasticity and dynamic modulation of the postsynaptic membrane , 2000, Nature Neuroscience.

[47]  M. Bear,et al.  Regulation of distinct AMPA receptor phosphorylation sites during bidirectional synaptic plasticity , 2000, Nature.

[48]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.