A modified semi-empirical model to retrieve crop canopy chlorophyll content
暂无分享,去创建一个
Zheng Niu | Jihua Wang | Qiang Liu | Chunyan Yan | Z. Niu | Jihua Wang | Qiang Liu | Chunyan Yan
[1] F. Baret,et al. PROSPECT: A model of leaf optical properties spectra , 1990 .
[2] A. Gitelson,et al. Spectral reflectance changes associated with autumn senescence of Aesculus hippocastanum L. and Acer platanoides L. leaves. Spectral features and relation to chlorophyll estimation , 1994 .
[3] John R. Miller,et al. Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture , 2002 .
[4] G. Rondeaux,et al. Optimization of soil-adjusted vegetation indices , 1996 .
[5] S. Jacquemoud. Inversion of the PROSPECT + SAIL Canopy Reflectance Model from AVIRIS Equivalent Spectra: Theoretical Study , 1993 .
[6] P. Bicheron. A Method of Biophysical Parameter Retrieval at Global Scale by Inversion of a Vegetation Reflectance Model , 1999 .
[7] Moon S. Kim,et al. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves , 1992 .
[8] Moon S. Kim,et al. The use of high spectral resolution bands for estimating absorbed photosynthetically active radiation (A par) , 1994 .
[9] S. Ustin,et al. Critique of stepwise multiple linear regression for the extraction of leaf biochemistry information from leaf reflectance data , 1996 .
[10] W. Verhoef. Light scattering by leaf layers with application to canopy reflectance modeling: The Scattering by Arbitrarily Inclined Leaves (SAIL) model , 1984 .
[11] F. M. Danson,et al. Extraction of vegetation biophysical parameters by inversion of the PROSPECT + SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors , 1995 .
[12] R. Myneni,et al. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data , 2000 .