Modeling and solving continuous-time instantaneous dynamic user equilibria: A differential complementarity systems approach

This paper is the second of a two-part research wherein we undertake a mathematically rigorous investigation of the continuous-time dynamic user equilibrium (DUE) problem using the recently introduced mathematical paradigm of differential complementarity systems (DCSs). Based on the thorough study of continuous-time single-destination point-queue models in the previous part, we first extend this special case to multiple destinations respecting the First-In–First-Out property of travel flows. A DCS with constant time delay is then introduced to formulate the continuous-time model of instantaneous dynamic traffic equilibria (IDUE) with a fixed demand profile. We develop a time decomposition scheme based on link free flow travel times to convert the delay DCS to a series of DCSs without time delays that are solved by a numerical time-stepping method. We provide rigorous numerical treatment of the time-decomposed IDUE model, including solvability of the discrete-time complementarity problems and convergence of the numerical trajectories to a continuous-time solution. We present numerical results to validate the IDUE on a small network and also on the Sioux Falls network.

[1]  Lawrence F. Shampine,et al.  Solving ODEs with MATLAB , 2002 .

[2]  Bin Ran,et al.  A New Class of Instantaneous Dynamic User-Optimal Traffic Assignment Models , 1993, Oper. Res..

[3]  Jong-Shi Pang,et al.  Semicopositive linear complementarity systems , 2007 .

[4]  H. M. Zhang,et al.  A Comparative Study of Some Macroscopic Link Models Used in Dynamic Traffic Assignment , 2005 .

[5]  M. Çamlibel,et al.  Popov–Belevitch–Hautus type tests for the controllability of linear complementarity systems , 2007 .

[6]  W. Vickrey Congestion Theory and Transport Investment , 1969 .

[7]  Mike Smith,et al.  A new dynamic traffic model and the existence and calculation of dynamic user equilibria on congested capacity-constrained road networks , 1993 .

[8]  M. Kanat Camlibel,et al.  Passivity and complementarity , 2014, Math. Program..

[9]  B Heydecker,et al.  CALCULATION OF DYNAMIC TRAFFIC EQUILIBRIUM ASSIGNMENTS , 1999 .

[10]  Y. W. Xu,et al.  Advances in the Continuous Dynamic Network Loading Problem , 1996, Transp. Sci..

[11]  Terry L. Friesz,et al.  Dynamic Network User Equilibrium with State-Dependent Time Lags , 2001 .

[12]  Jong-Shi Pang,et al.  Linear Complementarity Systems with Singleton Properties: Non-Zenoness , 2007, 2007 American Control Conference.

[13]  M. Kanat Camlibel,et al.  Lyapunov Stability of Complementarity and Extended Systems , 2006, SIAM J. Optim..

[14]  M. Kanat Camlibel,et al.  Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems , 2009, SIAM J. Numer. Anal..

[15]  Jong-Shi Pang,et al.  Switching and stability properties of conewise linear systems , 2010 .

[16]  M. Kanat Camlibel,et al.  On Linear Passive Complementarity Systems , 2002, Eur. J. Control.

[17]  M. Kanat Camlibel,et al.  Conewise Linear Systems: Non-Zenoness and Observability , 2006, SIAM J. Control. Optim..

[18]  Lo Yang,et al.  Time-stepping methods for linear complementarity systems , 2012 .

[19]  Deepak K. Merchant,et al.  A Model and an Algorithm for the Dynamic Traffic Assignment Problems , 1978 .

[20]  Terry L. Friesz,et al.  A Variational Inequality Formulation of the Dynamic Network User Equilibrium Problem , 1993, Oper. Res..

[21]  Jong-Shi Pang,et al.  Strongly Regular Differential Variational Systems , 2007, IEEE Transactions on Automatic Control.

[22]  Jong-Shi Pang,et al.  Solution dependence on initial conditions in differential variational inequalities , 2008, Math. Program..

[23]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[24]  Jong-Shi Pang,et al.  Non-Zenoness of a class of differential quasi-variational inequalities , 2010, Math. Program..

[25]  Henry X. Liu,et al.  Continuous-time point-queue models in dynamic network loading , 2012 .

[26]  Malachy Carey,et al.  Behaviour of a whole-link travel time model used in dynamic traffic assignment , 2002 .

[27]  Satish V. Ukkusuri,et al.  A continuous-time linear complementarity system for dynamic user equilibria in single bottleneck traffic flows , 2012, Math. Program..

[28]  Masao Kuwahara,et al.  Dynamic user optimal assignment with physical queues for a many-to-many OD pattern , 2001 .

[29]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[30]  Jong-Shi Pang,et al.  Linear Complementarity Systems: Zeno States , 2005, SIAM J. Control. Optim..

[31]  Carlos F. Daganzo,et al.  Properties of link travel time functions under dynamic loads , 1995 .

[32]  Jong-Shi Pang,et al.  Differential variational inequalities , 2008, Math. Program..

[33]  Johannes Schumacher,et al.  Existence and uniqueness of solutions for a class of piecewise linear dynamical systems , 2002 .

[34]  Patrice Marcotte,et al.  On the Existence of Solutions to the Dynamic User Equilibrium Problem , 2000, Transp. Sci..

[35]  Terry L. Friesz,et al.  Solving the Dynamic Network User Equilibrium Problem with State-Dependent Time Shifts , 2006 .

[36]  Terry L. Friesz,et al.  Approximate network loading and dual-time-scale dynamic user equilibrium , 2011 .

[37]  M. Kanat Camlibel,et al.  Popov-Belevitch-Hautus type controllability tests for linear complementarity systems , 2007, Syst. Control. Lett..

[38]  Bin Ran,et al.  for dynamic user equilibria with exact flow propagations , 2008 .

[39]  Athanasios K. Ziliaskopoulos,et al.  Foundations of Dynamic Traffic Assignment: The Past, the Present and the Future , 2001 .

[40]  George L. Nemhauser,et al.  Optimality Conditions for a Dynamic Traffic Assignment Model , 1978 .

[41]  M. Çamlibel Complementarity Methods in the Analysis of Piecewise Linear Dynamical Systems , 2001 .

[42]  Masao Kuwahara,et al.  Decomposition of the reactive dynamic assignments with queues for a many-to-many origin-destination pattern , 1997 .

[43]  Hai-Jun Huang,et al.  Dynamic user optimal traffic assignment model for many to one travel demand , 1995 .

[44]  Terry L. Friesz,et al.  Dynamic Network Traffic Assignment Considered as a Continuous Time Optimal Control Problem , 1989, Oper. Res..

[45]  L. Shampine,et al.  Solving DDEs in MATLAB , 2001 .

[46]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[47]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[48]  M. Kanat Camlibel,et al.  Algebraic Necessary and Sufficient Conditions for the Controllability of Conewise Linear Systems , 2008, IEEE Transactions on Automatic Control.

[49]  Bin Ran,et al.  MODELING DYNAMIC TRANSPORTATION NETWORKS : AN INTELLIGENT TRANSPORTATION SYSTEM ORIENTED APPROACH. 2ND REV. ED. , 1996 .