Friedrichs extension of operators defined by even order Sturm-Liouville equations on time scales
暂无分享,去创建一个
[1] P. Zemánek,et al. FRIEDRICHS EXTENSION OF OPERATORS DEFINED BY LINEAR HAMILTONIAN SYSTEMS ON UNBOUNDED INTERVAL , 2010 .
[2] B. Simon. The Classical Moment Problem as a Self-Adjoint Finite Difference Operator , 1998, math-ph/9906008.
[3] Christopher C. Tisdell,et al. Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling , 2008 .
[4] Trigonometric and hyperbolic systems on time scales , 2009 .
[5] B. Rynne. L2 spaces and boundary value problems on time-scales , 2007 .
[6] Martin Bohner,et al. Disconjugacy and Transformations for Symplectic Systems , 1997 .
[7] B. Malcolm Brown,et al. On the Krein and Friedrichs extensions of a positive Jacobi operator , 2005 .
[8] Gregory M. Gelles,et al. Multiplier-accelerator Models on Time Scales , 2010 .
[9] K. Friedrichs. Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung , 1936 .
[10] H. Kalf. A Characterization of the Friedrichs Extension of Sturm‐Liouville Operators , 1978 .
[11] O. Doslý. Principal and nonprincipal solutions of symplectic dynamic systems on time scales , 1999 .
[12] P. Zemánek. Krein-von Neumann and Friedrichs extensions for second order operators on time scales , 2011 .
[13] Anton Zettl,et al. Singular Sturm-Liouville problems : the Friedrichs extension and comparison of eigenvalues , 1992 .
[14] K. Friedrichs,et al. Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .
[15] F. Gesztesy,et al. Critical and Subcritical Jacobi Operators Defined as Friedrichs Extensions , 1993 .
[16] Douglas R. Anderson,et al. Higher-order self-adjoint boundary-value problems on time scales , 2006 .
[17] Shaozhu Chen,et al. GKN theory for linear Hamiltonian systems , 2006, Appl. Math. Comput..
[18] Second Order Self-Adjoint Equations with Mixed Derivatives , 2003 .
[19] S. Hilger. Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .
[20] Henrik L. Pedersen. Stieltjes moment problems and the Friedrichs extension of a positive definite operator , 1995 .
[21] P. Hasil,et al. Critical higher order Sturm–Liouville difference operators , 2011 .
[22] J. Neumann,et al. Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren , 1930 .
[23] Marco Marletta,et al. The Friedrichs Extension of Singular Differential Operators , 2000 .
[24] P. Hasil. Conjugacy of Self-Adjoint Difference Equations of Even Order , 2011 .
[25] Shurong Sun,et al. The Glazman-Krein-Naimark theory for a class of discrete hamiltonian systems , 2007 .
[26] On the Friedrichs extension of semi-bounded difference operators , 1994 .
[27] Anton Zettl,et al. The Friedrichs extension of regular ordinary differential operators , 1990 .
[28] F. Rellich. Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung , 1950 .
[29] K. Friedrichs,et al. Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .
[30] R. Rosenberger. A New Characterization of the Friedrichs Extension of Semibounded Sturm‐Liouville Operators , 1985 .
[31] A. Tahvildar-Zadeh,et al. Scalar waves on a naked-singularity background , 2004, gr-qc/0401011.
[32] Petr Zemánek. A note on the equivalence between even order Sturm-Liouville equations and symplectic systems on time scales , 2013, Appl. Math. Lett..
[33] A. Peterson,et al. Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .
[34] Petr Zemánek,et al. New results for time reversed symplectic dynamic systems and quadratic functionals , 2012 .
[35] P. Hasil,et al. Friedrichs extension of operators defined by symmetric banded matrices , 2009 .
[36] P. Hartman. Ordinary Differential Equations , 1965 .
[37] V. Zagrebnov,et al. TOWARDS THE RIGHT HAMILTONIAN FOR SINGULAR PERTURBATIONS VIA REGULARIZATION AND EXTENSION THEORY , 1996 .