Friedrichs extension of operators defined by even order Sturm-Liouville equations on time scales

In this paper we characterize the Friedrichs extension of operators associated with the 2n-th order Sturm-Liouville dynamic equations on time scales with using the time reversed symplectic systems and its recessive system of solutions. A nontrivial example is also provided.

[1]  P. Zemánek,et al.  FRIEDRICHS EXTENSION OF OPERATORS DEFINED BY LINEAR HAMILTONIAN SYSTEMS ON UNBOUNDED INTERVAL , 2010 .

[2]  B. Simon The Classical Moment Problem as a Self-Adjoint Finite Difference Operator , 1998, math-ph/9906008.

[3]  Christopher C. Tisdell,et al.  Basic qualitative and quantitative results for solutions to nonlinear, dynamic equations on time scales with an application to economic modelling , 2008 .

[4]  Trigonometric and hyperbolic systems on time scales , 2009 .

[5]  B. Rynne L2 spaces and boundary value problems on time-scales , 2007 .

[6]  Martin Bohner,et al.  Disconjugacy and Transformations for Symplectic Systems , 1997 .

[7]  B. Malcolm Brown,et al.  On the Krein and Friedrichs extensions of a positive Jacobi operator , 2005 .

[8]  Gregory M. Gelles,et al.  Multiplier-accelerator Models on Time Scales , 2010 .

[9]  K. Friedrichs Über die ausgezeichnete Randbedingung in der Spektraltheorie der halbbeschränkten gewöhnlichen Differentialoperatoren zweiter Ordnung , 1936 .

[10]  H. Kalf A Characterization of the Friedrichs Extension of Sturm‐Liouville Operators , 1978 .

[11]  O. Doslý Principal and nonprincipal solutions of symplectic dynamic systems on time scales , 1999 .

[12]  P. Zemánek Krein-von Neumann and Friedrichs extensions for second order operators on time scales , 2011 .

[13]  Anton Zettl,et al.  Singular Sturm-Liouville problems : the Friedrichs extension and comparison of eigenvalues , 1992 .

[14]  K. Friedrichs,et al.  Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .

[15]  F. Gesztesy,et al.  Critical and Subcritical Jacobi Operators Defined as Friedrichs Extensions , 1993 .

[16]  Douglas R. Anderson,et al.  Higher-order self-adjoint boundary-value problems on time scales , 2006 .

[17]  Shaozhu Chen,et al.  GKN theory for linear Hamiltonian systems , 2006, Appl. Math. Comput..

[18]  Second Order Self-Adjoint Equations with Mixed Derivatives , 2003 .

[19]  S. Hilger Analysis on Measure Chains — A Unified Approach to Continuous and Discrete Calculus , 1990 .

[20]  Henrik L. Pedersen Stieltjes moment problems and the Friedrichs extension of a positive definite operator , 1995 .

[21]  P. Hasil,et al.  Critical higher order Sturm–Liouville difference operators , 2011 .

[22]  J. Neumann,et al.  Allgemeine Eigenwerttheorie Hermitescher Funktionaloperatoren , 1930 .

[23]  Marco Marletta,et al.  The Friedrichs Extension of Singular Differential Operators , 2000 .

[24]  P. Hasil Conjugacy of Self-Adjoint Difference Equations of Even Order , 2011 .

[25]  Shurong Sun,et al.  The Glazman-Krein-Naimark theory for a class of discrete hamiltonian systems , 2007 .

[26]  On the Friedrichs extension of semi-bounded difference operators , 1994 .

[27]  Anton Zettl,et al.  The Friedrichs extension of regular ordinary differential operators , 1990 .

[28]  F. Rellich Halbbeschränkte gewöhnliche Differentialoperatoren zweiter Ordnung , 1950 .

[29]  K. Friedrichs,et al.  Spektraltheorie halbbeschränkter Operatoren und Anwendung auf die Spektralzerlegung von Differentialoperatoren , 1934 .

[30]  R. Rosenberger A New Characterization of the Friedrichs Extension of Semibounded Sturm‐Liouville Operators , 1985 .

[31]  A. Tahvildar-Zadeh,et al.  Scalar waves on a naked-singularity background , 2004, gr-qc/0401011.

[32]  Petr Zemánek A note on the equivalence between even order Sturm-Liouville equations and symplectic systems on time scales , 2013, Appl. Math. Lett..

[33]  A. Peterson,et al.  Dynamic Equations on Time Scales: An Introduction with Applications , 2001 .

[34]  Petr Zemánek,et al.  New results for time reversed symplectic dynamic systems and quadratic functionals , 2012 .

[35]  P. Hasil,et al.  Friedrichs extension of operators defined by symmetric banded matrices , 2009 .

[36]  P. Hartman Ordinary Differential Equations , 1965 .

[37]  V. Zagrebnov,et al.  TOWARDS THE RIGHT HAMILTONIAN FOR SINGULAR PERTURBATIONS VIA REGULARIZATION AND EXTENSION THEORY , 1996 .