CbGRiTS: cerebellar gene regulation in time and space.

The mammalian CNS is one of the most complex biological systems to understand at the molecular level. The temporal information from time series transcriptome analysis can serve as a potent source of associative information between developmental processes and regulatory genes. Here, we introduce a new transcriptome database called, Cerebellar Gene Regulation in Time and Space (CbGRiTS). This dataset is populated with transcriptome data across embryonic and postnatal development from two standard mouse strains, C57BL/6J and DBA/2J, several recombinant inbred lines and cerebellar mutant strains. Users can evaluate expression profiles across cerebellar development in a deep time series with graphical interfaces for data exploration and link-out to anatomical expression databases. We present three analytical approaches that take advantage of specific aspects of the time series for transcriptome analysis. We demonstrate the use of CbGRiTS dataset as a community resource to explore patterns of gene expression and develop hypotheses concerning gene regulatory networks in brain development.

[1]  Ziv Bar-Joseph,et al.  Analyzing time series gene expression data , 2004, Bioinform..

[2]  D. Geschwind,et al.  Functional and Evolutionary Insights into Human Brain Development through Global Transcriptome Analysis , 2009, Neuron.

[3]  L. Kruglyak,et al.  Genetic Dissection of Transcriptional Regulation in Budding Yeast , 2002, Science.

[4]  M. Abercrombie Estimation of nuclear population from microtome sections , 1946, The Anatomical record.

[5]  Thomas J. Ha,et al.  Conserved and differential gene interactions in dynamical biological systems , 2011, Bioinform..

[6]  Allan R. Jones,et al.  Transcriptional Architecture of the Primate Neocortex , 2012, Neuron.

[7]  N. Heintz Gene Expression Nervous System Atlas (GENSAT) , 2004, Nature Neuroscience.

[8]  Andrew I Su,et al.  Uncovering regulatory pathways that affect hematopoietic stem cell function using 'genetical genomics' , 2005, Nature Genetics.

[9]  Seth Blackshaw,et al.  A genomic atlas of mouse hypothalamic development , 2010, Nature Neuroscience.

[10]  Robert R Klevecz,et al.  Signal processing and the design of microarray time-series experiments. , 2007, Methods in molecular biology.

[11]  A. Fukushima DiffCorr: an R package to analyze and visualize differential correlations in biological networks. , 2013, Gene.

[12]  R. Mark Henkelman,et al.  Multiple developmental programs are altered by loss of Zic1 and Zic4 to cause Dandy-Walker malformation cerebellar pathogenesis , 2011, Development.

[13]  Dan Goldowitz,et al.  The cells and molecules that make a cerebellum , 1998, Trends in Neurosciences.

[14]  Robert F. Hevner,et al.  Transcription factors in glutamatergic neurogenesis: Conserved programs in neocortex, cerebellum, and adult hippocampus , 2006, Neuroscience Research.

[15]  Robert W. Williams,et al.  Complex trait analysis of gene expression uncovers polygenic and pleiotropic networks that modulate nervous system function , 2005, Nature Genetics.

[16]  Gord Fishell,et al.  Math1 Is Expressed in Temporally Discrete Pools of Cerebellar Rhombic-Lip Neural Progenitors , 2005, Neuron.

[17]  Toshio Kojima,et al.  Cerebellar development transcriptome database (CDT-DB): Profiling of spatio-temporal gene expression during the postnatal development of mouse cerebellum , 2008, Neural Networks.

[18]  Brad T. Sherman,et al.  Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists , 2008, Nucleic acids research.

[19]  N. Andreasen,et al.  The Role of the Cerebellum in Schizophrenia , 2008, Biological Psychiatry.

[20]  S. Horvath,et al.  Statistical Applications in Genetics and Molecular Biology , 2011 .

[21]  Yun Zhang,et al.  A systematic comparison of genome-scale clustering algorithms , 2012, BMC Bioinformatics.

[22]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[23]  John L. Bradshaw,et al.  Autism and Asperger's disorder: Are they movement disorders involving the cerebellum and/or basal ganglia? , 2005, Brain Research Bulletin.

[24]  R. Sidman,et al.  An autoradiographic analysis of histogenesis in the mouse cerebellum. , 1961, Experimental neurology.

[25]  Huda Y. Zoghbi,et al.  Genetic regulation of cerebellar development , 2001, Nature Reviews Neuroscience.

[26]  A. Kriegstein,et al.  Defining the role of GABA in cortical development , 2009, The Journal of physiology.

[27]  Michael A. Langston,et al.  Combinatorial Genetic Regulatory Network Analysis Tools for High Throughput Transcriptomic Data , 2005, Systems Biology and Regulatory Genomics.

[28]  C. Englund,et al.  Development of the Deep Cerebellar Nuclei: Transcription Factors and Cell Migration from the Rhombic Lip , 2006, The Journal of Neuroscience.

[29]  D. Hadley,et al.  Patterns of sequence conservation in presynaptic neural genes , 2006, Genome Biology.

[30]  Benjamin D. Sachs,et al.  RORα Coordinates Reciprocal Signaling in Cerebellar Development through Sonic hedgehog and Calcium-Dependent Pathways , 2003, Neuron.

[31]  Debra L. Fulton,et al.  TFCat: the curated catalog of mouse and human transcription factors , 2009, Genome Biology.

[32]  J. Nap,et al.  Genetical genomics: the added value from segregation. , 2001, Trends in genetics : TIG.

[33]  B. Roska,et al.  Genetic address book for retinal cell types , 2009, Nature Neuroscience.

[34]  Gregor Eichele,et al.  GenePaint.org: an atlas of gene expression patterns in the mouse embryo , 2004, Nucleic Acids Res..

[35]  M. Hirsch,et al.  Differential Equations, Dynamical Systems, and an Introduction to Chaos , 2003 .

[36]  T. Vicsek,et al.  Uncovering the overlapping community structure of complex networks in nature and society , 2005, Nature.

[37]  Yang Xiang,et al.  A dynamic time order network for time-series gene expression data analysis , 2012, BMC Systems Biology.

[38]  K. Vadakkan,et al.  Cell-type specific proximity of centromeric domains of one homologue each of chromosomes 2 and 11 in nuclei of cerebellar Purkinje neurons , 2006, Chromosoma.

[39]  E. Davidson,et al.  Gene Regulatory Networks and the Evolution of Animal Body Plans , 2006, Science.

[40]  Terence Hwa,et al.  Extracting transcriptional events from temporal gene expression patterns during Dictyostelium development , 2002, Bioinform..

[41]  U. De Boni,et al.  Nuclear topology of murine, cerebellar Purkinje neurons: changes as a function of development. , 2000, Experimental cell research.

[42]  Juan M. Vaquerizas,et al.  A census of human transcription factors: function, expression and evolution , 2009, Nature Reviews Genetics.

[43]  An-Yuan Guo,et al.  ERGR: An ethanol-related gene resource , 2008, Nucleic Acids Res..

[44]  E. De Schutter,et al.  Deletion of FMR1 in Purkinje Cells Enhances Parallel Fiber LTD, Enlarges Spines, and Attenuates Cerebellar Eyelid Conditioning in Fragile X Syndrome , 2005, Neuron.

[45]  Michael A. Langston,et al.  Graph algorithms for integrated biological analysis, with applications to type 1 diabetes data , 2009 .

[46]  Robert W. Williams,et al.  Gene expression in the mouse eye: an online resource for genetics using 103 strains of mice , 2009, Molecular vision.

[47]  Brad T. Sherman,et al.  DAVID: Database for Annotation, Visualization, and Integrated Discovery , 2003, Genome Biology.

[48]  Erin M. Schuman,et al.  The Local Transcriptome in the Synaptic Neuropil Revealed by Deep Sequencing and High-Resolution Imaging , 2012, Neuron.

[49]  Michael A. Langston,et al.  Threshold selection in gene co-expression networks using spectral graph theory techniques , 2009, BMC Bioinformatics.

[50]  John D. Storey,et al.  Significance analysis of time course microarray experiments. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[51]  Jacqueline N. Crawley,et al.  Autistic-like behavior and cerebellar dysfunction in Purkinje cell Tsc1 mutant mice , 2012, Nature.

[52]  Liping Wei,et al.  Genes and (Common) Pathways Underlying Drug Addiction , 2007, PLoS Comput. Biol..

[53]  J. Leek,et al.  Temporal dynamics and genetic control of transcription in the human prefrontal cortex , 2011, Nature.

[54]  M. Hatten,et al.  Genes involved in cerebellar cell specification and differentiation , 1997, Current Opinion in Neurobiology.

[55]  K. Huber The fragile X–cerebellum connection , 2006, Trends in Neurosciences.

[56]  Michael A. Langston,et al.  Extracting Gene Networks for Low-Dose Radiation Using Graph Theoretical Algorithms , 2006, PLoS Comput. Biol..

[57]  Thomas J. Ha,et al.  Genome‐wide microarray comparison reveals downstream genes of Pax6 in the developing mouse cerebellum , 2012, The European journal of neuroscience.

[58]  Cyril R Pernet,et al.  Brain classification reveals the right cerebellum as the best biomarker of dyslexia , 2009, BMC Neuroscience.

[59]  Chris P. Ponting,et al.  A Transcriptomic Atlas of Mouse Neocortical Layers , 2011, Neuron.