Noradrenergic enhancement improves motor network connectivity in stroke patients

Both animal and human data suggest that noradrenergic stimulation may enhance motor performance after brain damage. We conducted a placebo‐controlled, double‐blind and crossover design study to investigate the effects of noradrenergic stimulation on the cortical motor system in hemiparetic stroke patients.

[1]  Pélagie M. Beeson,et al.  Cost function masking during normalization of brains with focal lesions: Still a necessity? , 2010, NeuroImage.

[2]  Hermann Ackermann,et al.  The role of the unaffected hemisphere in motor recovery after stroke , 2010, Human brain mapping.

[3]  G. Fink,et al.  Noradrenergic modulation of cortical networks engaged in visuomotor processing. , 2010, Cerebral cortex.

[4]  J. Baron,et al.  Motor imagery after stroke: Relating outcome to motor network connectivity , 2009, Annals of neurology.

[5]  G. Fink,et al.  Bidirectional alterations of interhemispheric parietal balance by non-invasive cortical stimulation. , 2009, Brain : a journal of neurology.

[6]  Nikos Makris,et al.  Microstructural status of ipsilesional and contralesional corticospinal tract correlates with motor skill in chronic stroke patients , 2009, Human brain mapping.

[7]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[8]  G. Fink,et al.  Noradrenergic stimulation and motor performance: Differential effects of reboxetine on movement kinematics and visuomotor abilities in healthy human subjects , 2009, Neuropsychologia.

[9]  L. Goldstein Amphetamine Trials and Tribulations , 2009, Stroke.

[10]  M. Hallett,et al.  Modifications of the interactions in the motor networks when a movement becomes automatic , 2008, The Journal of physiology.

[11]  Suzanne T. Witt,et al.  Functional neuroimaging correlates of finger-tapping task variations: An ALE meta-analysis , 2008, NeuroImage.

[12]  Gereon R Fink,et al.  Effects of low-frequency repetitive transcranial magnetic stimulation of the contralesional primary motor cortex on movement kinematics and neural activity in subcortical stroke. , 2008, Archives of neurology.

[13]  Stephan P. Swinnen,et al.  Acquisition of a new bimanual coordination pattern modulates the cerebral activations elicited by an intrinsic pattern: An fMRI study , 2008, Cortex.

[14]  Tatsuya Asai,et al.  Hemispheric Asymmetry of Frequency-Dependent Suppression in the Ipsilateral Primary Motor Cortex During Finger Movement: A Functional Magnetic Resonance Imaging Study , 2008, Cerebral cortex.

[15]  D C Noll,et al.  Neuroanatomical correlates of motor acquisition and motor transfer. , 2008, Journal of neurophysiology.

[16]  Steven C. Cramer Repairing the human brain after stroke: I. Mechanisms of spontaneous recovery , 2008, Annals of neurology.

[17]  G. Fink,et al.  Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging , 2008, Annals of neurology.

[18]  Karl J. Friston,et al.  Spatial normalization of lesioned brains: Performance evaluation and impact on fMRI analyses , 2007, NeuroImage.

[19]  Chris Rorden,et al.  Improving Lesion-Symptom Mapping , 2007, Journal of Cognitive Neuroscience.

[20]  J. Liepert,et al.  Reboxetine improves motor function in chronic stroke , 2007, Journal of Neurology.

[21]  K. Nakadate,et al.  Identification of adrenoceptor subtype-mediated changes in the density of synapses in the rat visual cortex , 2006, Neuroscience.

[22]  Ann M. Stowe,et al.  A Single Injection of d-Amphetamine Facilitates Improvements in Motor Training Following a Focal Cortical Infarct in Squirrel Monkeys , 2006, Neurorehabilitation and neural repair.

[23]  U. Ziemann,et al.  Modification of practice-dependent plasticity in human motor cortex by neuromodulators. , 2006, Cerebral cortex.

[24]  Karl J. Friston,et al.  Non-invasive mapping of corticofugal fibres from multiple motor areas--relevance to stroke recovery. , 2006, Brain : a journal of neurology.

[25]  D. Noll,et al.  Bilateral basal ganglia activation associated with sensorimotor adaptation , 2006, Experimental Brain Research.

[26]  Richard S. J. Frackowiak,et al.  Motor system activation after subcortical stroke depends on corticospinal system integrity. , 2006, Brain : a journal of neurology.

[27]  W. McIlroy,et al.  Physiotherapy Coupled With Dextroamphetamine for Rehabilitation After Hemiparetic Stroke: A Randomized, Double-Blind, Placebo-Controlled Trial , 2006, Stroke.

[28]  Ann M. Stowe,et al.  Extensive Cortical Rewiring after Brain Injury , 2005, The Journal of Neuroscience.

[29]  Karl J. Friston,et al.  Unified segmentation , 2005, NeuroImage.

[30]  Simon B. Eickhoff,et al.  A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data , 2005, NeuroImage.

[31]  L. Cohen,et al.  Effects of non-invasive cortical stimulation on skilled motor function in chronic stroke. , 2005, Brain : a journal of neurology.

[32]  P. Strick,et al.  Frontal Lobe Inputs to the Digit Representations of the Motor Areas on the Lateral Surface of the Hemisphere , 2005, The Journal of Neuroscience.

[33]  T. Platz,et al.  Amphetamine fails to facilitate motor performance and to enhance motor recovery among stroke patients with mild arm paresis: interim analysis and termination of a double blind, randomised, placebo-controlled trial. , 2005, Restorative neurology and neuroscience.

[34]  L. Cohen,et al.  Improved motor skill acquisition after selective stimulation of central norepinephrine , 2004, Neurology.

[35]  R. Lemon,et al.  Macaque ventral premotor cortex exerts powerful facilitation of motor cortex outputs to upper limb motoneurons. , 2004, The Journal of Neuroscience.

[36]  Thomas R. Riley,et al.  A Randomized Double-blind Placebo-controlled Trial , 2004 .

[37]  D. M. Feeney,et al.  Noradrenergic modulation of hemiplegia: facilitation and maintenance of recovery. , 2004, Restorative neurology and neuroscience.

[38]  Richard S. J. Frackowiak,et al.  Neural correlates of motor recovery after stroke: a longitudinal fMRI study. , 2003, Brain : a journal of neurology.

[39]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[40]  CinziaCalautti,et al.  Functional Neuroimaging Studies of Motor Recovery After Stroke in Adults , 2003 .

[41]  S. Hesse,et al.  No benefit from D-amphetamine when added to physiotherapy after stroke: a randomized, placebo-controlled study , 2003, Clinical rehabilitation.

[42]  S. Barbay,et al.  Reorganization of remote cortical regions after ischemic brain injury: a potential substrate for stroke recovery. , 2003, Journal of neurophysiology.

[43]  C. Calautti,et al.  Functional Neuroimaging Studies of Motor Recovery After Stroke in Adults: A Review , 2003, Stroke.

[44]  F. Dick,et al.  Voxel-based lesion–symptom mapping , 2003, Nature Neuroscience.

[45]  C. Berridge,et al.  The locus coeruleus–noradrenergic system: modulation of behavioral state and state-dependent cognitive processes , 2003, Brain Research Reviews.

[46]  L. Cohen,et al.  Modulation of use‐dependent plasticity by d‐amphetamine , 2002, Supplements to Clinical neurophysiology.

[47]  P. Strick,et al.  Motor areas in the frontal lobe of the primate , 2002, Physiology & Behavior.

[48]  G. Skuza,et al.  Effect of repeated treatment with reboxetine on the central alpha 1-adrenergic and dopaminergic receptors. , 2002, Polish journal of pharmacology.

[49]  I. Lucki,et al.  Effects of Acute and Chronic Reboxetine Treatment on Stress-induced Monoamine Efflux in the Rat Frontal Cortex , 2002, Neuropsychopharmacology.

[50]  F. Chollet,et al.  Fluoxetine modulates motor performance and cerebral activation of patients recovering from stroke , 2001, Annals of neurology.

[51]  C. Calautti,et al.  Dynamics of Motor Network Overactivation After Striatocapsular Stroke: A Longitudinal PET Study Using a Fixed-Performance Paradigm , 2001, Stroke.

[52]  Chris Rorden,et al.  Spatial Normalization of Brain Images with Focal Lesions Using Cost Function Masking , 2001, NeuroImage.

[53]  D. M. Feeney,et al.  Enduring vulnerability to transient reinstatement of hemiplegia by prazosin after traumatic brain injury. , 2001, Journal of neurotrauma.

[54]  J. Seckl,et al.  Early and delayed induction of immediate early gene expression in a novel focal cerebral ischemia model in the rat , 2000, The European journal of neuroscience.

[55]  B. Waterhouse,et al.  Norepinephrine exhibits two distinct profiles of action on sensory cortical neuron responses to excitatory synaptic stimuli , 2000, Synapse.

[56]  Susan G. Amara,et al.  Reboxetine: a pharmacologically potent, selective, and specific norepinephrine reuptake inhibitor , 2000, Biological Psychiatry.

[57]  J. Krakauer,et al.  Evolution of cortical activation during recovery from corticospinal tract infarction. , 2000, Stroke.

[58]  M. Bear,et al.  Modulation of Long-Term Synaptic Depression in Visual Cortex by Acetylcholine and Norepinephrine , 1999, The Journal of Neuroscience.

[59]  A. Schleicher,et al.  Long-term changes of ionotropic glutamate and GABA receptors after unilateral permanent focal cerebral ischemia in the mouse brain , 1998, Neuroscience.

[60]  Karl J. Friston Imaging neuroscience: principles or maps? , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M. Hasselmo,et al.  Noradrenergic suppression of synaptic transmission may influence cortical signal-to-noise ratio. , 1997, Journal of neurophysiology.

[62]  L. Goldstein Effects of bilateral and unilateral locus coeruleus lesions on beam-walking recovery after subsequent unilateral sensorimotor cortex suction-ablation in the rat. , 1997, Restorative neurology and neuroscience.

[63]  P. Strick,et al.  Motor areas of the medial wall: a review of their location and functional activation. , 1996, Cerebral cortex.

[64]  D. Walker-Batson,et al.  Amphetamine paired with physical therapy accelerates motor recovery after stroke. Further evidence. , 1995, Stroke.

[65]  Germany,et al.  Pharmacokinetics of reboxetine in healthy volunteers. Single oral doses, linearity and plasma protein binding , 1995, Biopharmaceutics & drug disposition.

[66]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[67]  W. Singer,et al.  Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex , 1992, Brain Research.

[68]  J. Davis,et al.  Norepinephrine depletion impairs motor recovery following sensorimotor cortex injury in the rat. , 1991, Restorative neurology and neuroscience.

[69]  D. M. Feeney,et al.  Intraventricular norepinephrine facilitates motor recovery following sensorimotor cortex injury , 1990, Pharmacology Biochemistry and Behavior.

[70]  B. Berger,et al.  Catecholamine innervation of the human cerebral cortex as revealed by comparative immunohistochemistry of tyrosine hydroxylase and dopamine‐beta‐hydroxylase , 1989, The Journal of comparative neurology.

[71]  James N. Davis,et al.  Evidence that amphetamine with physical therapy promotes recovery of motor function in stroke patients , 1988, Annals of neurology.

[72]  P. Goldman-Rakic,et al.  Region‐specific distribution of catecholamine afferents in primate cerebral cortex: A fluorescence histochemical analysis , 1984, The Journal of comparative neurology.

[73]  D. M. Feeney,et al.  Amphetamine, haloperidol, and experience interact to affect rate of recovery after motor cortex injury. , 1982, Science.

[74]  Daniel O'Connor,et al.  Laminar, tangential and regional organization of the noradrenergic innervation of monkey cortex: Dopamine-β-hydroxylase immunohistochemistry , 1982, Brain Research Bulletin.

[75]  J. Pettigrew,et al.  Local perfusion of noradrenaline maintains visual cortical plasticity , 1978, Nature.

[76]  J. Pettigrew,et al.  Depletion of brain catecholamines: failure of ocular dominance shift after monocular occlusion in kittens. , 1976, Science.

[77]  R. C. Oldfield The assessment and analysis of handedness: the Edinburgh inventory. , 1971, Neuropsychologia.