Spiral wound modules and spacers - Review and analysis

The operation of spiral wound modules in industrial plants is affected by many parameters, including the operating conditions, the arrangements of the spiral wound modules in arrays and the design of the spiral wound module itself. This paper reviews techniques and approaches for the analysis and optimisation of the performance of spiral wound modules. The analysis of the design of spiral wound modules and arrays with a combination of experimental and numerical techniques can help to identify the optimal array arrangements, module geometry and spacer design for specific applications. The onset of fouling as characterised by the decisive point of the onset of fouling known as the critical flux is discussed in the context of minimisation of fouling within modules and arrays.

[1]  Kamalesh K. Sirkar,et al.  Response to comments on "Approximate design equations for reverse osmosis desalination by spiral wound modules" , 1983 .

[2]  William G. Light,et al.  Improvement of Thin-Channel Design for Pressure-Driven Membrane Systems , 1981 .

[3]  J Schwinge,et al.  Characterization of a zigzag spacer for ultrafiltration , 2000 .

[4]  David F. Fletcher,et al.  Techniques for computational fluid dynamics modelling of flow in membrane channels , 2003 .

[5]  W. L. Griffith,et al.  The role of turbulence promoters in hyperfiltration plant optimization , 1971 .

[6]  Alan S. Michaels,et al.  SOLUTE POLARIZATION AND CAKE FORMATION IN MEMBRANE ULTRAFILTRATION: CAUSES, CONSEQUENCES, AND CONTROL TECHNIQUES , 1970 .

[7]  V. S. Vassiliadis,et al.  Optimisation of membrane regeneration scheduling in reverse osmosis networks for seawater desalination , 1999 .

[8]  J. S. Watson,et al.  Forced convection mass transfer: Part IV. Increased mass transfer in an aqueous medium caused by detached cylindrical turbulence promoters in a rectangular channel , 1967 .

[9]  Anthony G. Fane,et al.  Optimal channel spacer design for ultrafiltration , 1991 .

[10]  Kamalesh K. Sirkar,et al.  Approximate design equations for reverse osmosis desalination by spiral-wound modules , 1982 .

[11]  Kamalesh K. Sirkar,et al.  Analytical design equations for multicomponent reverse osmosis processes by spiral-wound modules , 1985 .

[12]  C. E. Milstead,et al.  Spiral-wound thin-film composite membrane systems for brackish and seawater desalination by reverse osmosis , 1977 .

[13]  Mahmoud M. El-Halwagi,et al.  Optimal design and scheduling of flexible reverse osmosis networks , 1997 .

[14]  Edward L Cussler,et al.  Mass transfer in corrugated membranes , 2000 .

[15]  W. J. King,et al.  III—Relationship between Heat Transfer and Pressure Drop1 , 1931 .

[16]  Ain A. Sonin,et al.  Sherwood Number and Friction Factor Correlations for Electrodialysis Systems, with Application to Process Optimization , 1976 .

[17]  Jos T. F. Keurentjes,et al.  Membrane cascades for the separation of binary mixtures , 1992 .

[18]  Robert W. Field,et al.  Critical flux measurement for model colloids , 1999 .

[19]  F. B. Leitz,et al.  Enhanced mass transfer in electrochemical cells using turbulence promoters , 1977 .

[20]  Jan Hofman,et al.  Simplified modelling of diffusion-controlled membrane systems , 1994 .

[21]  Georges Belfort,et al.  An experimental study of electrodialysis hydrodynamics , 1972 .

[22]  Robert H. Davis,et al.  The behavior of suspensions and macromolecular solutions in crossflow microfiltration , 1994 .

[23]  Andrzej Burghardt,et al.  Effect of mass transport resistances in multicomponent membrane extraction on the overall mass fluxes , 2000 .

[24]  Marcel Mulder,et al.  Basic Principles of Membrane Technology , 1991 .

[25]  R. Rautenbach,et al.  Design and optimization of spiral-wound and hollow fiber RO-modules , 1987 .

[26]  Allan P. Colburn,et al.  Heat Transfer and Pressure Drop in Empty, Baffled, and Packed Tubes1 , 1931 .

[27]  M. L. Costa,et al.  Modelling of modules and systems in reverse osmosis. Part I: Theoretical system design model development , 1991 .

[28]  Kamalesh K. Sirkar,et al.  Explicit flux expressions in tubular reverse osmosis desalination , 1978 .

[29]  Antonio Dr Chiolle,et al.  Mathematical model of reverse osmosis in parallel-wall channels with turbulence promoting nets , 1978 .

[30]  David F. Fletcher,et al.  Simulation of Unsteady Flow and Vortex Shedding for Narrow Spacer-Filled Channels , 2003 .

[31]  Yoshio Taniguchi,et al.  An analysis of reverse osmosis characteristics of ROGA spiral-wound modules , 1978 .

[32]  Saravanamuthu Vigneswaran,et al.  Influence of particle size and surface charge on critical flux of crossflow microfiltration , 1998 .

[33]  Anthony G. Fane,et al.  Net-Type Spacers: Effect of Configuration on Fluid Flow Path and Ultrafiltration Flux , 1994 .

[34]  David G. Thomas Forced convection mass transfer: Part II. Effect of wires located near the edge of the laminar boundary layer on the rate of forced convection from a flat plate , 1965 .

[35]  Peter F. Levy,et al.  THE EFFECT OF CHANNEL HEIGHT AND CHANNEL SPACERS ON FLUX AND ENERGY REQUIREMENTS IN CROSSFLOW FILTRATION , 1994 .

[36]  David F. Fletcher,et al.  Simulation of the Flow around Spacer Filaments between Narrow Channel Walls. 1. Hydrodynamics , 2002 .

[37]  Ashish Kulkarni,et al.  MULTICOMPONENT TRANSPORT OF ELECTROLYTES THROUGH CELLULOSE ACETATE MEMBRANES , 1996 .

[38]  Pierre Aimar,et al.  On an experimental method to measure critical flux in ultrafiltration , 2002 .

[39]  Lloyd P. M. Johnston,et al.  Optimal design of reverse osmosis module networks , 2000 .

[40]  James M. Dickson,et al.  Dilute single and mixed solute systems in a spiral wound reserve osmosis module Part I: Theoretical model development , 1992 .

[41]  Gunnar Eigil Jonsson,et al.  OPTIMAL DESIGN AND PERFORMANCE OF SPIRAL WOUND MODULES II: ANALYTICAL METHOD , 1988 .

[42]  Nikolaos A. Peppas,et al.  Friction coefficient analysis of multicomponent solute transport through polymer membranes , 1996 .

[43]  Hongyu Li,et al.  An assessment of depolarisation models of crossflow microfiltration by direct observation through the membrane , 2000 .

[44]  Haruhiko Ohya,et al.  An analysis of reverse osmotic characteristics of B-9 hollow fiber module , 1977 .

[45]  Nieck E. Benes,et al.  comparison of macro and microscopic theories describing multicomponent mass transport in microporous media , 1999 .

[46]  Shoji Kimura,et al.  Mass Transfer Coefficients for Use in Reverse Osmosis Process Design , 1968 .

[47]  A. Katchalsky,et al.  Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. , 1958, Biochimica et biophysica acta.

[48]  P. R. Neal,et al.  Estimation of foulant deposition across the leaf of a spiral-wound module☆ , 2002 .

[49]  J. Howell,et al.  Sub-critical flux operation of microfiltration , 1995 .

[50]  A. Fane,et al.  Particle deposition during membrane filtration of colloids: transition between concentration polarization and cake formation , 1997 .

[51]  A. B. de Haan,et al.  Study of flow patterns for mass transfer enhancement by spacers in spiral wound module by CFD simulation , 2001 .

[52]  Sayed Siavash Madaeni,et al.  The effect of operating conditions on critical flux in membrane filtration of latexes , 1997 .

[53]  David F. Fletcher,et al.  Computational fluid dynamics modelling of flow and permeation for pressure-driven membrane processes , 2002 .

[54]  Günther Laufenberg,et al.  Rejection of acetic acid and its improvement by combination with organic acids in dilute solutions using reverse osmosis , 1996 .

[55]  A. B. de Haan,et al.  Optimization of commercial net spacers in spiral wound membrane modules , 2002 .

[56]  V. Kottke,et al.  Effects of spacer geometry on pressure drop, mass transfer, mixing behavior, and residence time distribution , 1996 .

[57]  L. T. Fan,et al.  Analysis and optimization of a reverse osmosis water purification system—part II. Optimization , 1969 .

[58]  R. Field,et al.  Critical flux concept for microfiltration fouling , 1995 .

[59]  Mourad Ben Boudinar Performance prediction and optimisation of spiral wound modules , 1991 .

[60]  James M. Dickson,et al.  Dilute single and mixed solute systems in a spiral wound reverse osmosis module: Part II. Experimental data and application of the model , 1994 .

[61]  Z.E.H. Otten,et al.  New strategies for economic optimal membrane fouling control based on dynamic optimization , 1993 .

[62]  Vassilis Gekas,et al.  Mass transfer in the membrane concentration polarization layer under turbulent cross flow , 1987 .

[63]  Franco Evangelista,et al.  An improved analytical method for the design of spiral-wound modules , 1988 .

[64]  David F. Fletcher,et al.  Simulation of the Flow around Spacer Filaments between Channel Walls. 2. Mass-Transfer Enhancement , 2002 .

[65]  Takeshi Matsuura,et al.  Specification of commercial reverse osmosis modules and predictability of their performance for water treatment applications , 1980 .

[66]  Franco Evangelista,et al.  Improved graphical-analytical method for the design of reverse-osmosis plants , 1986 .

[67]  Y. Winograd,et al.  Mass transfer in narrow channels in the presence of turbulence promoters , 1973 .

[68]  Shyam S. Sablani,et al.  Influence of spacer thickness on permeate flux in spiral-wound seawater reverse osmosis systems , 2002 .

[69]  S. Avlonitis,et al.  Flow parameter profiles in the crossflow of a two-component fluid through semipermeable membranes , 1997 .

[70]  Hans G.L. Coster,et al.  Observation of deposition and removal behaviour of submicron bacteria on the membrane surface during crossflow microfiltration , 2003 .

[71]  Ho Nam Chang,et al.  Experimental study of mass transfer around a turbulence promoter by the limiting current method , 1983 .

[72]  In Seok Kang,et al.  The effect of turbulence promoters on mass transfer—numerical analysis and flow visualization , 1982 .

[73]  Benito Jose Marinas,et al.  MODELING CONCENTRATION-POLARIZATION IN REVERSE OSMOSIS SPIRAL-WOUND ELEMENTS , 1996 .

[74]  Hans G.L. Coster,et al.  Direct observation of particle deposition on the membrane surface during crossflow microfiltration , 1998 .

[75]  Shoji Kimura,et al.  Stagewise Reverse Osmosis Process Design , 1969 .

[76]  Mika Mänttäri,et al.  Critical flux in NF of high molar mass polysaccharides and effluents from the paper industry , 2000 .

[77]  W. T. Hanbury,et al.  Numerical simulation and optimisation of spiral-wound modules , 1992 .

[78]  Vicki Chen,et al.  Performance of partially permeable microfiltration membranes under low fouling conditions , 1998 .

[79]  Dianne E. Wiley,et al.  Factors influencing critical flux in membrane filtration of activated sludge , 1999 .

[80]  Dianne E. Wiley,et al.  Ultrafiltration of whey protein solutions in spacer-filled flat channels , 1993 .

[81]  Anthony G. Fane,et al.  Experimental determination of critical flux in cross-flow microfiltration , 2000 .

[82]  Mahmoud M. El-Halwagi,et al.  Synthesis of reverse‐osmosis networks for waste reduction , 1992 .

[83]  J Baeyens,et al.  Macroscopic fluid flow conditions in spiral-wound membrane elements , 1997 .

[84]  Joseph W. McCutchan,et al.  Systems analysis of a multi-stage tubular module reverse osmosis plant for sea water desalination , 1974 .

[85]  Shoji Kimura,et al.  Analysis of data in reverse osmosis with porous cellulose acetate membranes used , 1967 .

[86]  R. W. Lawrence,et al.  Calculation of the expected performance of reverse osmosis plants , 1982 .

[87]  Ronald F. Probstein,et al.  Ultrafiltration of macromolecular solutions at high polarization in laminar channel flow , 1977 .

[88]  V. Kottke,et al.  Comparison of heat and mass transfer in different heat exchanger geometries with corrugated walls , 2002 .

[89]  Franco Evangelista,et al.  Explicit expressions for permeate flux and concentration in hyperfiltration , 1986 .

[90]  W. R. Mixon,et al.  Effect of Axial Velocity and Initial Flux on Flux Decline of Cellulose Acetate Membranes in Hyperfiltration of Primary Sewage Effluents , 1972 .

[91]  J Baeyens,et al.  Macroscopic fluid flow conditions in spiral wound membrane elements: packed bed approach , 2000 .

[92]  L. T. Fan,et al.  Analysis and optimization of a reverse osmosis water purification system Part I. Process analysis and simulation , 1968 .

[93]  Takeshi Matsuura,et al.  Synthetic Membranes and Membrane Separation Processes , 1993 .

[94]  R. H. Muller,et al.  MASS TRANSFER ENHANCEMENT BY SMALL FLOW OBSTACLES IN ELECTROCHEMICAL CELLS , 1985 .

[95]  Haruhiko Ohya,et al.  An analysis of reverse osmotic characteristics of ROGA-4000 spiral-wound module , 1975 .

[96]  Haruhiko Ohya,et al.  Some general equations for reverse osmosis process design , 1969 .

[97]  David F. Fletcher,et al.  A CFD study of unsteady flow in narrow spacer-filled channels for spiral-wound membrane modules , 2002 .

[98]  Andrew L. Zydney,et al.  Influence of protein–protein interactions on bulk mass transport during ultrafiltration , 1997 .

[99]  Stamatios Avlonitis Investigation and Prediction of Spiral Wound Reverse Osmosis Membrane Performance , 1991 .

[100]  S. V. Polyakov,et al.  Turbulence promoter geometry: its influence on salt rejection and pressure losses of a composite-membrane spiral would module , 1992 .

[101]  Gunnar Eigil Jonsson,et al.  Flow dynamics and concentration polarisation in spacer-filled channels☆ , 2002 .

[102]  Douglas R. Lloyd,et al.  Multicomponent effects in the pressure-driven membrane separation of dilute solutions of nonelectrolytes , 1989 .

[103]  Viriato Semiao,et al.  The effect of the ladder-type spacers configuration in NF spiral-wound modules on the concentration boundary layers disruption☆ , 2002 .

[104]  Y. Winograd,et al.  An analytical model for mass transfer in an electrodialysis cell with spacer of finite mesh , 1971 .

[105]  Dianne E. Wiley,et al.  CFD simulations of net-type turbulence promoters in a narrow channel , 2001 .

[106]  Franco Evangelista A short cut method for the design of reverse osmosis desalination plants , 1985 .

[107]  J. C. van Dijk,et al.  Theoretical optimization of spiral-wound and capillary nanofiltration modules , 1997 .

[108]  J. Fárková,et al.  The pressure drop in membrane module with spacers , 1991 .

[109]  William B. Krantz,et al.  Real-time measurement of inorganic fouling of RO desalination membranes using ultrasonic time-domain reflectometry , 1999 .

[110]  N. Ibl,et al.  The use of eddy promoters for the enhancement of mass transport in electrolytic cells , 1980 .

[111]  Viriato Semiao,et al.  Numerical modelling of mass transfer in slits with semi‐permeable membrane walls , 2000 .

[112]  J. C. van Dijk,et al.  Mathematical model of nanofiltration systems , 1996 .

[113]  Ronald F. Probstein,et al.  Turbulence Promotion and Hydrodynamic Optimization in an Ultrafiltration Process , 1979 .

[114]  Munir Cheryan,et al.  Ultrafiltration and Microfiltration Handbook , 1998 .

[115]  Vítor Geraldes,et al.  Flow and mass transfer modelling of nanofiltration , 2001 .

[116]  A. B. de Haan,et al.  Optimization of non-woven spacers by CFD and validation by experiments , 2002 .

[117]  G. Schock,et al.  Mass transfer and pressure loss in spiral wound modules , 1987 .

[118]  E. N. Sieder,et al.  Heat Transfer and Pressure Drop of Liquids in Tubes , 1936 .

[119]  A.J.B. van Boxtel,et al.  Dynamic optimization of a one-stage reverse-osmosis installation with respect to membrane fouling , 1992 .

[120]  Sandeep K. Karode,et al.  Flow visualization through spacer filled channels by computational fluid dynamics I. , 2001 .

[121]  Edwin N. Lightfoot,et al.  Protein ultrafiltration: A general example of boundary layer filtration , 1972 .

[122]  Julia E. Nemeth Innovative system designs to optimize performance of ultra-low pressure reverse osmosis membranes , 1998 .

[123]  P. R. Neal,et al.  The effect of filament orientation on critical flux and particle deposition in spacer-filled channels , 2003 .

[124]  J. Howell,et al.  Critical flux in ultrafiltration of myoglobin and baker’s yeast , 2002 .

[125]  A. Colburn,et al.  Mass Transfer (Absorption) Coefficients Prediction from Data on Heat Transfer and Fluid Friction , 1934 .

[126]  David G. Thomas Forced Convection Mass Transfer in Hyperfiltration at High Fluxes , 1973 .

[127]  David G. Thomas Forced convection mass transfer: Part III. Increased mass transfer from a flat plate caused by the wake from cylinders located near the edge of the boundary layer , 1966 .

[128]  V. A. Klyachko,et al.  Hydraulic principles for the design of electrodialysis desalination plants , 1967 .

[129]  W. T. Hanbury,et al.  Spiral wound modules performance an analytical solution: Part II , 1991 .

[130]  Nuri Yucel,et al.  Laminar flow and mass transfer in channels with a porous bottom wall and with fins attached to the top wall , 2000 .