MODULAR THEORY AND GEOMETRY

In this communication we present some new results on modular theory in the context of quantum field theory. In doing this we develop some new proposals how to generalize concepts of finite dimensional geometrical actions to infinite dimensional "hidden" symmetries. The latter are of a purely modular origin and remain hidden in any quantization approach. The spirit of this work is more on a programmatic side, with many details remaining to be elaborated.

[1]  J. Yngvason,et al.  Modular groups of quantum fields in thermal states , 1998, math-ph/9805013.

[2]  H. Borchers On Poincaré Transformations and the Modular Group of the Algebra Associated with a Wedge , 1998 .

[3]  D. Buchholz,et al.  GEOMETRIC MODULAR ACTION AND SPACETIME SYMMETRY GROUPS , 1998, math-ph/9805026.

[4]  B. Schroer Localization and Nonperturbative Local Quantum Physics , 1998, hep-th/9805093.

[5]  C. Jaekel Cluster Estimates for Modular Structures , 1998, hep-th/9804017.

[6]  H. Wiesbrock Modular Intersections of von Neumann Algebras in Quantum Field Theory , 1998 .

[7]  R. Longo,et al.  Extensions of Conformal Nets¶and Superselection Structures , 1997, hep-th/9703129.

[8]  B. Schroer Modular Wedge Localization and the d=1+1 Formfactor Program , 1997, hep-th/9712124.

[9]  B. Schroer Motivations and Physical Aims of Algebraic QFT , 1996, hep-th/9608083.

[10]  H. Wiesbrock Symmetries and Modular Intersections of Von Neumann Algebras , 1997 .

[11]  H. Borchers,et al.  Half-sided modular inclusion and the construction of the Poincaré group , 1996 .

[12]  S. J. Summers,et al.  Modular inclusion, the Hawking temperature, and quantum field theory in curved spacetime , 1996 .

[13]  K. Fredenhagen,et al.  Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansions , 1996 .

[14]  H. Borchers When does Lorentz invariance imply wedge duality? , 1995 .

[15]  H. Borchers On the use of modular groups in quantum field theory , 1995 .

[16]  J. Yngvason A note on essential duality , 1994 .

[17]  H. Wiesbrock Conformal quantum field theory and half-sided modular inclusions of von-Neumann-Algebras , 1993 .

[18]  H. Wiesbrock Half-Sided modular inclusions of von-Neumann-Algebras , 1993 .

[19]  F. Gabbiani,et al.  Operator algebras and conformal field theory , 1993 .

[20]  Jϋrg Frόhlich Operator Algebras and Conformal Field Theory , 1993 .

[21]  H. Borchers The CPT-theorem in two-dimensional theories of local observables , 1992 .

[22]  R. Haag,et al.  Local quantum physics , 1992 .

[23]  H. Schulz-Mirbach,et al.  HAAG DUALITY IN CONFORMAL QUANTUM FIELD THEORY , 1990 .

[24]  O. Lehto,et al.  Univalent functions and Teichm?uller space , 1986 .

[25]  W. Unruh,et al.  What happens when an accelerating observer detects a Rindler particle , 1984 .

[26]  G. Sewell Quantum fields on manifolds: PCT and gravitationally induced thermal states , 1982 .

[27]  S. Stratila,et al.  Modular Theory in Operator Algebras , 1981 .

[28]  G. Pedersen C-Algebras and Their Automorphism Groups , 1979 .

[29]  W. Unruh Notes on black-hole evaporation , 1976 .

[30]  Eyvind H. Wichmann,et al.  On the duality condition for a Hermitian scalar field , 1975 .

[31]  竹崎 正道 Tomita's theory of modular Hilbert algebras and its applications , 1970 .

[32]  Rudolf Haag,et al.  On the equilibrium states in quantum statistical mechanics , 1967 .