On the bottleneck stability of rank decompositions of multi-parameter persistence modules

. The notion of rank decomposition of a multi-parameter persistence module was introduced as a way of constructing complete and discrete representations of the rank invariant of the module. In partic- ular, the minimal rank decomposition by rectangles of a persistence module, also known as the generalized persistence diagram, gives a uniquely defined representation of the rank invariant of the module by a pair of rectangle-decomposable modules. This pair is interpreted as a signed barcode, with the rectangle summands of the first (resp. second) module playing the role of the positive (resp. negative) bars. The minimal rank decomposition by rectangles generalizes the concept of persistence barcode from one-parameter persistence, and, being a discrete invariant, it is amenable to manipulations on a computer. However, we show that it is not bottleneck stable under the natural notion of signed bottleneck matching between signed barcodes. To remedy this, we turn our focus to the signed barcode induced by the Betti numbers of the module relative to the so-called rank exact structure, which we prove to be bottleneck stable under signed matchings. As part of our proof, we obtain two intermediate results of independent interest: we compute the global dimension of the rank exact structure on the category of finitely presentable multi-parameter persistence modules, and we prove a bottleneck stability result for hook-decomposable modules, which are in fact the relative projective modules of the rank exact structure. We also bound the size of the multigraded Betti numbers relative to the rank exact structure in terms of the usual multigraded Betti numbers, we prove a universality result for the dissimilarity function induced by the notion of signed matching, and we compute, in the two-parameter case, the global dimension of a different exact structure that is related to the upsets of the indexing poset.

[1]  Emerson G. Escolar,et al.  Approximation by interval-decomposables and interval resolutions of persistence modules , 2022, Journal of Pure and Applied Algebra.

[2]  Martina Scolamiero,et al.  EFFECTIVE COMPUTATION OF RELATIVE HOMOLOGICAL INVARIANTS FOR FUNCTORS OVER POSETS , 2022 .

[3]  F. Mémoli,et al.  The discriminating power of the generalized rank invariant , 2022, ArXiv.

[4]  S. Oudot,et al.  Signed Barcodes for Multi-Parameter Persistence via Rank Decompositions and Rank-Exact Resolutions , 2021, SoCG.

[5]  S. Oudot,et al.  On the stability of multigraded Betti numbers and Hilbert functions , 2021, ArXiv.

[6]  Eric J. Hanson,et al.  Homological approximations in persistence theory , 2021, Canadian Journal of Mathematics.

[7]  René Corbet,et al.  The shift-dimension of multipersistence modules , 2021, Journal of Applied and Computational Topology.

[8]  Michael Kerber,et al.  Asymptotic Improvements on the Exact Matching Distance for 2-parameter Persistence , 2021, ArXiv.

[9]  Woojin Kim,et al.  Generalized persistence diagrams for persistence modules over posets , 2018, Journal of Applied and Computational Topology.

[10]  Nicolas Berkouk,et al.  Algebraic Homotopy Interleaving Distance , 2021, GSI.

[11]  Håvard Bakke Bjerkevik On the Stability of Interval Decomposable Persistence Modules , 2021, Discret. Comput. Geom..

[12]  Ezra Miller Homological algebra of modules over posets. , 2020, 2008.00063.

[13]  Michael Kerber,et al.  Efficient Approximation of the Matching Distance for 2-parameter persistence , 2019, SoCG.

[14]  W. Crawley-Boevey,et al.  Decomposition of persistence modules , 2018, Proceedings of the American Mathematical Society.

[15]  Emerson G. Escolar,et al.  On Approximation of $2$D Persistence Modules by Interval-decomposables , 2019, 1911.01637.

[16]  A. Patel,et al.  Positivity of Multiparameter Persistence Diagrams and Bottleneck Stability , 2019, 1905.13220.

[17]  Steve Oudot,et al.  Exact computation of the matching distance on 2-parameter persistence modules , 2018, SoCG.

[18]  Heather A. Harrington,et al.  Stratifying Multiparameter Persistent Homology , 2017, SIAM J. Appl. Algebra Geom..

[19]  Amit Patel,et al.  Generalized persistence diagrams , 2016, J. Appl. Comput. Topol..

[20]  Oliver Gafvert,et al.  Stable Invariants for Multidimensional Persistence , 2017, 1703.03632.

[21]  Wojciech Chachólski,et al.  Multidimensional Persistence and Noise , 2015, Foundations of Computational Mathematics.

[22]  Steve Oudot,et al.  The Structure and Stability of Persistence Modules , 2012, Springer Briefs in Mathematics.

[23]  Sven Strauss,et al.  Theory of categories , 1965 .

[24]  Michael Lesnick,et al.  Interactive Visualization of 2-D Persistence Modules , 2015, ArXiv.

[25]  Michael Lesnick,et al.  The Theory of the Interleaving Distance on Multidimensional Persistence Modules , 2011, Found. Comput. Math..

[26]  Claudia Landi,et al.  The rank invariant stability via interleavings , 2014, ArXiv.

[27]  Ulrich Bauer,et al.  Induced Matchings of Barcodes and the Algebraic Stability of Persistence , 2013, SoCG.

[28]  Michael Lesnick,et al.  Multidimensional Interleavings and Applications to Topological Inference , 2012, ArXiv.

[29]  Overtoun M. G. Jenda,et al.  Relative homological algebra , 1956 .

[30]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[31]  Afra Zomorodian,et al.  The Theory of Multidimensional Persistence , 2007, SCG '07.

[32]  P. Dräxler,et al.  Exact categories and vector space categories , 1999 .

[33]  R. Stanley,et al.  On the foundations of combinatorial theory. VI. The idea of generating function , 1972 .

[34]  Gorô Azumaya,et al.  Corrections and Supplementaries to My Paper concerning Krull-Remak-Schmidt’s Theorem , 1950, Nagoya Mathematical Journal.

[35]  M. Auslander Relative homology and representation theory I. Relative homology and homologically finite subcategories , 2022 .