Efficient preprocessing methods for tabu search: an application on asymmetric travelling salesman problem

Abstract This paper presents efficient methods of combining preprocessing methods and tabu search metaheuristic for solving large instances of the asymmetric travelling salesman problem (ATSP) with a focus on applications which require one to solve repeatedly different instances of ATSP and where for each instance one needs a reasonably good-quality solution quickly. For such applications, we present two hybrid metaheuristics, namely GA-SAG and RGC-SAG that, respectively, use genetic algorithm (GA) and randomized greedy contract (RGC) algorithm as preprocessing mechanisms, to sparsify a dense graph and apply an implementation of tabu search specifically designed for sparse asymmetric graphs (SAG) to further improve the solution quality. Our computational experience shows that both GA-SAG and RGC-SAG clearly outperform the conventional implementation of pure tabu search. Moreover, for benchmark instances, RGC-SAG reaches a solution within 1%–5% of the optimal solution much faster than the best known heuristics on benchmark problem instances. RGC-SAG provides tour values better than those obtained by PATCH or KP heuristic on 50% and 75% of the benchmark instances, respectively. Although the quality of the solutions obtained in Helsgaun or in the paper by doubly rooted stem and cycle ejection chain algorithm is marginally better than RGC-SAG on most of the benchmark instances, RGC-SAG establishes its potential with a significant reduction in computational time.

[1]  Fred W. Glover,et al.  Doubly‐rooted stem‐and‐cycle ejection chain algorithm for the asymmetric traveling salesman problem , 2016, Networks.

[2]  Yuichi Nagata,et al.  A new genetic algorithm for the asymmetric traveling salesman problem , 2012, Expert Syst. Appl..

[3]  John Knox,et al.  Tabu search performance on the symmetric traveling salesman problem , 1994, Comput. Oper. Res..

[4]  Sumanta Basu Tabu Search Implementation on Traveling Salesman Problem and Its Variations: A Literature Survey , 2012 .

[5]  Gregory Gutin,et al.  The traveling salesman problem , 2006, Discret. Optim..

[6]  Matteo Fischetti,et al.  A Polyhedral Approach to the Asymmetric Traveling Salesman Problem , 1997 .

[7]  Abraham P. Punnen,et al.  The travelling salesman problem: new solvable cases and linkages with the development of approximation algorithms , 1997 .

[8]  R. Bixby,et al.  On the Solution of Traveling Salesman Problems , 1998 .

[9]  Paolo Toth,et al.  Models and algorithms for the Asymmetric Traveling Salesman Problem: an experimental comparison , 2012, EURO J. Transp. Logist..

[10]  Sumanta Basu,et al.  Preprocessing Schemes for Tabu search on Asymmetric Traveling Salesman Problem , 2013 .

[11]  Claude-Nicolas Fiechter,et al.  A Parallel Tabu Search Algorithm for Large Traveling Salesman Problems , 1994, Discret. Appl. Math..

[12]  Weixiong Zhang,et al.  The Asymmetric Traveling Salesman Problem: Algorithms, Instance Generators, and Tests , 2001, ALENEX.

[13]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[14]  Lixin Tang,et al.  A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex , 2000, Eur. J. Oper. Res..

[15]  In-Chan Choi,et al.  A genetic algorithm with a mixed region search for the asymmetric traveling salesman problem , 2003, Comput. Oper. Res..

[16]  R. Gajulapalli,et al.  A fast tabu search implementation for large asymmetric traveling salesman problems defined on sparse graphs , 2013 .

[17]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[18]  Eugene L. Lawler,et al.  Traveling Salesman Problem , 2016 .

[19]  N. Biggs THE TRAVELING SALESMAN PROBLEM A Guided Tour of Combinatorial Optimization , 1986 .

[20]  B. Chor,et al.  RHO--radiation hybrid ordering. , 2000, Genome research.

[21]  ATSPDavid S. JohnsonAT Experimental Analysis of Heuristics for the Stsp , 2001 .

[22]  Hsiao-Fan Wang,et al.  Hybrid genetic algorithm for optimization problems with permutation property , 2004, Comput. Oper. Res..

[23]  B. M. Khumawala An Efficient Branch and Bound Algorithm for the Warehouse Location Problem , 1972 .

[24]  Gerard Sierksma,et al.  Tolerance-based Branch and Bound algorithms for the ATSP , 2008, Eur. J. Oper. Res..

[25]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  Christos H. Papadimitriou,et al.  Local Search for the Asymmetric Traveling Salesman Problem , 1980, Oper. Res..

[28]  Fred W. Glover,et al.  Construction heuristics for the asymmetric TSP , 2001, Eur. J. Oper. Res..

[29]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[30]  Sumanta Basu,et al.  Neighborhood reduction strategy for tabu search implementation in asymmetric traveling salesman problem , 2012 .

[31]  Manuel Laguna,et al.  Tabu Search , 1997 .

[32]  Pablo Moscato,et al.  A New Memetic Algorithm for the Asymmetric Traveling Salesman Problem , 2004, J. Heuristics.

[33]  Gilbert Laporte,et al.  Modeling and solving several classes of arc routing problems as traveling salesman problems , 1997, Comput. Oper. Res..

[34]  Thomas Stützle,et al.  Improvements on the Ant-System: Introducing the MAX-MIN Ant System , 1997, ICANNGA.

[35]  Fred W. Glover,et al.  Tabu Search - Part I , 1989, INFORMS J. Comput..

[36]  Paolo Toth,et al.  The Granular Tabu Search and Its Application to the Vehicle-Routing Problem , 2003, INFORMS J. Comput..

[37]  Gregory Gutin,et al.  Exponential neighbourhood local search for the traveling salesman problem , 1999, Comput. Oper. Res..

[38]  G Laporte,et al.  Solving arc routing problems with turn penalties , 2000, J. Oper. Res. Soc..

[39]  Keld Helsgaun,et al.  An effective implementation of the Lin-Kernighan traveling salesman heuristic , 2000, Eur. J. Oper. Res..

[40]  César Rego,et al.  Relaxed tours and path ejections for the traveling salesman problem , 1998, Eur. J. Oper. Res..

[41]  Gerhard Reinelt,et al.  TSPLIB - A Traveling Salesman Problem Library , 1991, INFORMS J. Comput..

[42]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[43]  J. C. Bean,et al.  An efficient transformation of the generalized traveling salesman problem , 1993 .

[44]  David S. Johnson,et al.  Experimental Analysis of Heuristics for the STSP , 2007 .

[45]  Fred W. Glover,et al.  Traveling salesman problem heuristics: Leading methods, implementations and latest advances , 2011, Eur. J. Oper. Res..

[46]  Sanjoy K. Baruah,et al.  Multiprocessor preprocessing algorithms for uniprocessor on-line scheduling , 2001, Proceedings 21st International Conference on Distributed Computing Systems.

[47]  Matteo Fischetti,et al.  Exact Methods for the Asymmetric Traveling Salesman Problem , 2007 .

[48]  Gilbert Laporte,et al.  A concise guide to the Traveling Salesman Problem , 2010, J. Oper. Res. Soc..

[49]  Brian W. Kernighan,et al.  An Effective Heuristic Algorithm for the Traveling-Salesman Problem , 1973, Oper. Res..

[50]  Doug Hains,et al.  Improving Lin-Kernighan-Helsgaun with Crossover on Clustered Instances of the TSP , 2012, PPSN.

[51]  Gregory Gutin,et al.  Small diameter neighbourhood graphs for the traveling salesman problem: at most four moves from tour to tour , 1999, Comput. Oper. Res..

[52]  Fred W. Glover,et al.  Implementation analysis of efficient heuristic algorithms for the traveling salesman problem , 2006, Comput. Oper. Res..

[53]  Boris Goldengorin,et al.  Lower tolerance-based Branch and Bound algorithms for the ATSP , 2012, Comput. Oper. Res..

[54]  J. Cunningham History , 2007, The Journal of Hellenic Studies.

[55]  David Ben-Arieh,et al.  Transformations of generalized ATSP into ATSP , 2003, Oper. Res. Lett..

[56]  Gregory Gutin,et al.  Evaluation of The Contract Or-Patch Heuristic Eor The Asymmetric Tsp1 , 2005 .

[57]  Ying-Wu Chen,et al.  A hybrid approach combining an improved genetic algorithm and optimization strategies for the asymmetric traveling salesman problem , 2008, Eng. Appl. Artif. Intell..

[58]  Fred W. Glover,et al.  Data structures and ejection chains for solving large-scale traveling salesman problems , 2005, Eur. J. Oper. Res..

[59]  Ángel Corberán,et al.  The Rural Postman Problem on mixed graphs with turn penalties , 2002, Comput. Oper. Res..

[60]  William J. Cook,et al.  The Traveling Salesman Problem: A Computational Study , 2007 .

[61]  Richard M. Karp,et al.  A Patching Algorithm for the Nonsymmetric Traveling-Salesman Problem , 1979, SIAM J. Comput..