Age hardening of a magnetron sputtered V-Al-Si-N quaternary coating

[1]  F. Huang,et al.  Enhancing the wear resistance of magnetron sputtered VN coating by Si addition , 2016 .

[2]  F. Huang,et al.  Improved mechanical and thermal properties of CrAlN coatings by Si solid solution , 2016 .

[3]  F. Huang,et al.  Friction and wear behavior of magnetron co-sputtered V–Si–N coatings , 2014 .

[4]  F. Huang,et al.  Achieving very low wear rates in binary transition-metal nitrides: The case of magnetron sputtered dense and highly oriented VN coatings , 2014 .

[5]  D. Holec,et al.  Structural and mechanical evolution of reactively and non-reactively sputtered Zr–Al–N thin films during annealing☆ , 2014, Surface & coatings technology.

[6]  F. Huang,et al.  Microstructure, chemical states, and mechanical properties of magnetron co-sputtered V1-xAlxN coatings , 2013 .

[7]  F. Huang,et al.  Superhard V-Si-N coatings (> 50 GPa) with the cell-like nanostructure prepared by magnetron sputtering , 2013 .

[8]  C. Mitterer,et al.  Vanadium containing self-adaptive low-friction hard coatings for high-temperature applications: A review , 2013 .

[9]  E. Stergar,et al.  Decomposition pathways in age hardening of Ti-Al-N films , 2011 .

[10]  C. Mitterer,et al.  Oxidation and diffusion study on AlCrVN hard coatings using oxygen isotopes 16O and 18O , 2011 .

[11]  S. Ringer,et al.  Microstructural investigation of Ti–Si–N hard coatings , 2010 .

[12]  M. Odén,et al.  Age hardening in arc-evaporated ZrAlN thin films , 2010 .

[13]  J. Schneider,et al.  Experimental and computational study on the phase stability of Al-containing cubic transition metal nitrides , 2010 .

[14]  A. Flink,et al.  The location and effects of Si in (Ti_1-xSi_x)N_y thin films , 2009 .

[15]  J. Ilavsky,et al.  In situ small-angle x-ray scattering study of nanostructure evolution during decomposition of arc evaporated TiAlN coatings , 2009 .

[16]  C. Mitterer,et al.  Hardness evolution of Al–Cr–N coatings under thermal load , 2008 .

[17]  M. Odén,et al.  Thermal decomposition products in arc evaporated TiAlN/TiN multilayers , 2008 .

[18]  D. B. Lewis,et al.  Oxidation Behavior and Mechanisms of TiAlN/VN Coatings , 2007 .

[19]  P. Mayrhofer,et al.  Thermal stability of superhard Ti–B–N coatings , 2007 .

[20]  C. Mitterer,et al.  Thermal stability of Al-Cr-N hard coatings , 2006 .

[21]  S. Vepřek,et al.  Avoiding the high-temperature decomposition and softening of (Al1−xTix)N coatings by the formation of stable superhard nc-(Al1−xTix)N/a-Si3N4 nanocomposite , 2004 .

[22]  Lars Hultman,et al.  Microstructural evolution during film growth , 2003 .

[23]  C. Mitterer,et al.  Self-organized nanostructures in the Ti–Al–N system , 2003 .