Binary Black Hole Mergers in the First Advanced LIGO Observing Run

The first observational run of the Advanced LIGO detectors, from September 12, 2015 to January 19, 2016, saw the first detections of gravitational waves from binary black hole mergers. In this paper we present full results from a search for binary black hole merger signals with total masses up to 100M⊙ and detailed implications from our observations of these systems. Our search, based on general-relativistic models of gravitational wave signals from binary black hole systems, unambiguously identified two signals, GW150914 and GW151226, with a significance of greater than 5σ over the observing period. It also identified a third possible signal, LVT151012, with substantially lower significance, which has a 87% probability of being of astrophysical origin. We provide detailed estimates of the parameters of the observed systems. Both GW150914 and GW151226 provide an unprecedented opportunity to study the two-body motion of a compact-object binary in the large velocity, highly nonlinear regime. We do not observe any deviations from general relativity, and place improved empirical bounds on several high-order post-Newtonian coefficients. From our observations we infer stellar-mass binary black hole merger rates lying in the range 9−240Gpc−3yr−1. These observations are beginning to inform astrophysical predictions of binary black hole formation rates, and indicate that future observing runs of the Advanced detector network will yield many more gravitational wave detections.

B. A. Boom | N. M. Brown | H. N. Isa | J. R. Palamos | S. A. Usman | M. J. Szczepa'nczyk | C. Broeck | S. Klimenko | A. Mukherjee | S. Oh | M. Fejer | P. Couvares | A. Wade | J. Worden | P. Graff | J. Gair | S. Babak | E. Porter | N. Gehrels | G. Prodi | S. Fairhurst | A. Heptonstall | D. Hofman | P. Wessels | D. Keitel | D. Kelley | W. Kells | R. Kennedy | J. Key | F. Khalili | S. Khan | Z. Khan | E. Khazanov | N. Kijbunchoo | J. Kim | K. Kim | N. Kim | Y. Kim | E. King | P. King | J. Kissel | L. Kleybolte | S. Koehlenbeck | S. Koley | V. Kondrashov | A. Kontos | M. Korobko | W. Korth | I. Kowalska | D. Kozak | V. Kringel | B. Krishnan | C. Krueger | G. Kuehn | P. Kumar | L. Kuo | A. Kutynia | B. Lackey | M. Landry | B. Lantz | P. Lasky | A. Lazzarini | C. Lazzaro | P. Leaci | S. Leavey | E. Lebigot | C. Lee | H. Lee | H. Lee | K. Lee | M. Leonardi | J. Leong | N. Leroy | N. Letendre | Y. Levin | T. G. F. Li | A. Libson | T. Littenberg | N. Lockerbie | A. Lombardi | J. Lord | M. Lorenzini | V. Loriette | M. Lormand | G. Losurdo | J. Lough | A. Lundgren | R. Lynch | Y. Ma | B. Machenschalk | M. Macinnis | D. Macleod | F. Magaña-Sandoval | R. Magee | E. Majorana | I. Maksimovic | V. Malvezzi | N. Man | I. Mandel | V. Mandic | V. Mangano | G. Mansell | M. Manske | M. Mantovani | F. Marchesoni | F. Marion | A. Markosyan | E. Maros | F. Martelli | L. Martellini | I. Martin | D. Martynov | J. Marx | K. Mason | A. Masserot | T. Massinger | M. Masso-Reid | F. Matichard | L. Matone | N. Mavalvala | N. Mazumder | R. McCarthy | D. McClelland | S. McCormick | S. McGuire | G. McIntyre | J. McIver | S. McWilliams | D. Meacher | G. Meadors | J. Meidam | A. Melatos | G. Mendell | R. Mercer | M. Merzougui | S. Meshkov | C. Messenger | C. Messick | P. Meyers | F. Mezzani | H. Miao | H. Middleton | E. Mikhailov | J. Miller | M. Millhouse | Y. Minenkov | J. Ming | S. Mirshekari | C. Mishra | S. Mitra | V. Mitrofanov | G. Mitselmakher | R. Mittleman | A. Moggi | S. Mohapatra | M. Montani | B. Moore | C. Moore | D. Moraru | G. Moreno | S. Morriss | K. Mossavi | B. Mours | C. Mow-Lowry | G. Mueller | A. Muir | D. Mukherjee | S. Mukherjee | A. Mullavey | J. Munch | D. Murphy | P. Murray | A. Mytidis | I. Nardecchia | L. Naticchioni | R. Nayak | K. Nedkova | G. Nelemans | M. Neri | A. Neunzert | G. Newton | T. Nguyen | A. Nielsen | S. Nissanke | A. Nitz | F. Nocera | D. Nolting | M. Normandin | L. Nuttall | J. Oberling | E. Ochsner | E. Oelker | G. Ogin | J. Oh | F. Ohme | M. Oliver | P. Oppermann | R. Oram | H. Overmier | B. Owen | A. Pai | S. Pai | J. Palamos | O. Palashov | C. Palomba | A. Pal-Singh | C. Pankow | F. Pannarale | B. Pant | F. Paoletti | A. Paoli | M. Papa | H. Paris | W. Parker | D. Pascucci | A. Pasqualetti | R. Passaquieti | D. Passuello | Z. Patrick | B. Pearlstone | M. Pedraza | R. Pedurand | L. Pekowsky | A. Pele | S. Penn | A. Perreca | M. Phelps | O. Piccinni | M. Pichot | F. Piergiovanni | V. Pierro | G. Pillant | L. Pinard | I. Pinto | M. Pitkin | R. Poggiani | A. Post | J. Powell | J. Prasad | V. Predoi | T. Prestegard | L. Price | M. Prijatelj | M. Principe | S. Privitera | L. Prokhorov | M. Punturo | P. Puppo | H. Qi | J. Qin | V. Quetschke | E. Quintero | R. Quitzow-James | F. Raab | D. Rabeling | H. Radkins | P. Raffai | S. Raja | M. Rakhmanov | P. Rapagnani | V. Raymond | M. Razzano | V. Re | J. Read | C. Reed | T. Regimbau | L. Rei | S. Reid | D. Reitze | H. Rew | F. Ricci | K. Riles | N. Robertson | R. Robie | F. Robinet | A. Rocchi | L. Rolland | J. Rollins | V. Roma | R. Romano | G. Romanov | J. Romie | S. Rowan | P. Ruggi | S. Sachdev | T. Sadecki | L. Sadeghian | M. Saleem | F. Salemi | A. Samajdar | L. Sammut | E. Sanchez | V. Sandberg | B. Sandeen | J. Sanders | B. Sassolas | O. Sauter | R. Savage | A. Sawadsky | P. Schale | R. Schilling | J. Schmidt | P. Schmidt | R. Schnabel | R. Schofield | E. Schreiber | D. Schuette | B. Schutz | J. Scott | S. Scott | D. Sellers | D. Sentenac | V. Sequino | Y. Setyawati | D. Shaddock | M. Shahriar | M. Shaltev | B. Shapiro | P. Shawhan | A. Sheperd | D. Shoemaker | K. Siellez | X. Siemens | D. Sigg | A. Silva | A. Singer | L. Singer | A. Singh | R. Singh | A. Sintes | J. Smith | N. Smith | R. Smith | E. Son | B. Sorazu | F. Sorrentino | T. Souradeep | A. Srivastava | A. Staley | M. Steinke | J. Steinlechner | D. Steinmeyer | B. Stephens | R. Stone | N. Straniero | G. Stratta | N. Strauss | S. Strigin | R. Sturani | T. Summerscales | L. Sun | P. Sutton | B. Swinkels | M. Tacca | D. Talukder | D. Tanner | S. Tarabrin | A. Taracchini | R. Taylor | T. Theeg | M. Thirugnanasambandam | E. Thomas | M. Thomas | P. Thomas | K. Thorne | E. Thrane | V. Tiwari | C. Tomlinson | M. Tonelli | C. Torres | C. Torrie | F. Travasso | G. Traylor | D. Trifirò | M. Tringali | L. Trozzo | M. Tse | M. Turconi | D. Tuyenbayev | D. Ugolini | C. Unnikrishnan | A. Urban | H. Vahlbruch | G. Vajente | G. Valdes | N. Bakel | M. Beuzekom | J. Brand | L. Schaaf | J. Heijningen | A. Veggel | M. Vardaro | S. Vass | R. Vaulin | E. Huerta | The Ligo Scientific Collaboration | D. Holz | H. Chen | R. Abbott | T. Abbott | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | A. Allocca | P. Altin | S. Anderson | W. Anderson | K. Arai | M. Araya | J. Areeda | S. Ascenzi | G. Ashton | S. Aston | P. Astone | P. Aufmuth | P. Bacon | M. Bader | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | J. Barayoga | S. Barclay | B. Barish | D. Barker | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bazzan | M. Bejger | A. Bell | G. Bergmann | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | I. Bilenko | G. Billingsley | J. Birch | R. Birney | O. Birnholtz | S. Biscans | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | S. Bloemen | M. Boer | G. Bogaert | F. Bondu | R. Bonnand | R. Bork | V. Boschi | S. Bose | Y. Bouffanais | A. Bozzi | C. Bradaschia | P. Brady | M. Branchesi | J. Brau | T. Briant | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | C. Buy | R. Byer | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | J. Bustillo | T. Callister | E. Calloni | J. Camp | K. Cannon | J. Cao | E. Capocasa | F. Carbognani | S. Caride | J. Diaz | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | G. Cerretani | E. Cesarini | S. Chamberlin | M. Chan | S. Chao | P. Charlton | É. Chassande-Mottin | B. Cheeseboro | Y. Chen | A. Chincarini | A. Chiummo | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | S. Chung | G. Ciani | F. Clara | J. Clark | F. Cleva | E. Coccia | P. Cohadon | C. Collette | L. Cominsky | M. Constancio | L. Conti | T. Corbitt | N. Cornish | A. Corsi | S. Cortese | C. Costa | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | E. Cowan | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | J. Cripe | S. Crowder | A. Cumming | L. Cunningham | E. Cuoco | T. Canton | S. Danilishin | S. D’Antonio | K. Danzmann | C. F. S. Costa | V. Dattilo | I. Dave | E. Daw | D. DeBra | J. Degallaix | M. D. Laurentis | W. D. Pozzo | T. Dent | R. Rosa | R. DeSalvo | S. Dhurandhar | L. Fiore | M. Giovanni | T. D. Girolamo | A. Lieto | S. D. Pace | I. Palma | F. Donovan | K. Dooley | S. Doravari | T. Downes | M. Drago | J. Driggers | S. Dwyer | T. Edo | M. Edwards | A. Effler | P. Ehrens | J. Eichholz | S. Eikenberry | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | Marc Favata | M. Fays | I. Ferrante | F. Ferrini | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | R. Flaminio | M. Fletcher | H. Fong | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | S. Gaebel | L. Gammaitoni | S. Gaonkar | F. Garufi | G. Gaur | G. Gemme | E. Génin | A. Gennai | L. Gergely | V. Germain | Abhirup Ghosh | A. Ghosh | S. Ghosh | J. Giaime | A. Giazotto | K. Gill | E. Goetz | R. Goetz | J. M. Castro | A. Gopakumar | M. Gorodetsky | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | C. Graef | M. Granata | A. Grant | S. Gras | C. Gray | G. Greco | A. Green | P. Groot | H. Grote | S. Grunewald | G. Guidi | A. Gupta | M. Gupta | E. Gustafson | R. Gustafson | B. Hall | E. Hall | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | J. Hanson | T. Hardwick | K. Haris | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | J. Hennig | M. Heurs | S. Hild | D. Hoak | K. Holt | P. Hopkins | J. Hough | E. Howell | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | R. Inta | J. Isac | M. Isi | B. Iyer | T. Jacqmin | K. Jani | P. Jaranowski | D. Jones | R. Jones | R. Jonker | L. Ju | C. Kalaghatgi | V. Kalogera | S. Kandhasamy | G. Kang | J. Kanner | S. Kapadia | S. Karki | K. Karvinen | M. Kasprzack | W. Katzman | S. Kaufer | K. Kawabe | I. Khan | Chunglee Kim | W. Kim | R. Kumar | M. Laxen | A. Lenon | L. London | C. Lousto | H. Luck | L. M. Zertuche | S. Mastrogiovanni | D. McManus | T. Mcrae | E. Merilh | R. Metzdorff | L. Milano | A. Miller | A. Miller | N. Mukund | T. Nelson | B. O'reilly | R. O’Shaughnessy | D. Ottaway | B. Patricelli | H. Pfeiffer | P. Popolizio | O. Puncken | M. Purrer | C. Rajan | M. Rizzo | A. Rudiger | K. Ryan | M. Sakellariadou | L. Salconi | P. Saulson | A. Schonbeck | A. Sengupta | T. Shaffer | D. Shoemaker | M. Sieniawska | A. Singhal | B. Slagmolen | S. Stevenson | K. Strain | S. Sunil | S. Tiwari | K. Toland | Z. Tornasi | D. Toyra | D. Vander-Hyde | A. Vecchio | G. Vedovato | J. Veitch | P. Veitch | K. Venkateswara | D. Verkindt | F. Vetrano | D. Vine | J. Vinet | S. Vitale | T. Vo | H. Vocca | C. Vorvick | S. Vyatchanin | L. Wade | M. Wade | M. Walker | L. Wallace | S. Walsh | G. Wang | H. Wang | Y. Wang | R. Ward | J. Warner | M. Was | B. Weaver | L.-W. Wei | M. Weinert | A. Weinstein | R. Weiss | K. Wette | B. Whiting | A. Williamson | J. Willis | B. Willke | M. Wimmer | W. Winkler | C. Wipf | H. Wittel | G. Woan | J. Woehler | J. Wright | D. Wu | H. Yamamoto | C. Yancey | M. Yvert | M. Zanolin | J. Zendri | M. Zevin | L. Zhang | C. Zhao | M. Zhou | Z. Zhou | X. Zhu | M. Zucker | J. Zweizig | S. M'arka | T. Abbott | N. Arnaud | K. Arun | B. Berger | M. Bizouard | V. Brisson | F. Cavalier | M. Davier | S. Del'eglise | M. D'iaz | R. Essick | V. Frey | G. Gonz'alez | M. Hannam | P. Hello | D. Huet | K. Izumi | N. Johnson-McDaniel | F. K'ef'elian | A. Kr'olak | Z. M'arka | D. Rosi'nska | B. Sathyaprakash | A. Stuver | M. T'apai | M. Vas'uth | A. Vicer'e | L. Wen | J. Whelan | A. Zadro.zny | M. Abernathy | T. Adams | P. Addesso | B. Allen | C. Arceneaux | M. Ast | C. Aulbert | J. Batch | C. Baune | V. Bavigadda | S. Bhagwat | C. Biwer | O. Bock | C. Bogan | A. Bohé | C. Bond | V. Braginsky | D. Brown | C. Buchanan | C. Capano | C. Cepeda | C. Cheng | J. Chow | A. Colla | A. Conte | D. Cook | K. Craig | N. Darman | G. Davies | R. Day | G. Debreczeni | T. Denker | V. Dergachev | R. Derosa | V. Dolique | R. Douglas | R. Drever | M. Ducrot | H. Eggenstein | W. Engels | R. Everett | M. Factourovich | Q. Fang | H. Fehrmann | K. Giardina | A. Glaefke | L. Gondán | N. Gordon | X. Guo | K. Gushwa | J. Hacker | M. Hart | M. Hartman | E. Houston | S. Huang | N. Indik | D. Ingram | T. Isogai | S. Jawahar | W. Johnson | E. Katsavounidis | T. Kaur | M. Kehl | J. Lange | M. Mohan | J. O'Dell | K. Tokmakov | S. Vinciguerra | W. Vousden | M. Wang | X. Wang | T. Westphal | R. Williams | G. Wu | J. Yablon | W. Yam | H. Yu | L. Zangrando | M. Zhang | S. Zuraw | R. Prix | J. Broida | A. Dasgupta | S. De | J. George | Y. Hu | F. Jim'enez-Forteza | S. Kimbrell | C. Michel | B. Miller | H. Pan | L. Perri | M. Poe | S. Reyes | J. Romano | S. Steinlechner | S. Whitcomb | Y. Zhang | E. Fenyvesi | E. Ferreira | R. Devine | A. Virgilio | J. Henry | B. Klein | S. Qiu | D. Voss | M. Vallisneri | Y. Pan | L. Baiardi | P. Geng | H. Hamilton | H. Jang | L. Jian | C. Kim | J. Lewis | A. Sergeev | J. C. Diaz | J. C. Bustillo | Y. Hu | R. McCarthy | Chi-Woong Kim | T. McRae | H. Cho | T. Li | Y. Pan | A. Singh | P. Kumar | M. Zhou | D. Brown | S. Ghosh | C. Zhao | C. Zhao | N. Brown | S. Mcguire | G. Mcintyre | A. Bell | S. Walsh | T. D. Canton | L. V. D. Schaaf | J. V. Heijningen | A. V. Veggel | S. Anderson | C. Moore | L. Zhang | R. Taylor | S. Mitra | M. Gupta | D. Ingram | Archisman Ghosh | A. Cumming | T. Hardwick | R. Jones | K. Kawabe | J. Miller | D. Cook | J. Miller | L. Zhang | P. Thomas | M. Walker | D. Jones | E. Thomas | A. Srivastava | A. Ghosh | G. Hammond | K. Holt | J. Kissel | M. Landry | B. Lantz | J. Brau | J. R. Smith | X. Fan | S. Mccormick | B. O’Reilly

[1]  N. Cornish,et al.  Gravitational wave tests of strong field general relativity with binary inspirals: Realistic injections and optimal model selection , 2013, 1303.1185.

[2]  T. Cokelaer Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.

[3]  K. Chatziioannou,et al.  SPIN-PRECESSION: BREAKING THE BLACK HOLE–NEUTRON STAR DEGENERACY , 2014, 1402.3581.

[4]  Bruce Allen,et al.  FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.

[5]  Frans Pretorius,et al.  Evolution of binary black-hole spacetimes. , 2005, Physical review letters.

[6]  Erik Katsavounidis,et al.  LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS , 2014, 1409.2435.

[7]  Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.

[8]  Dae-Il Choi,et al.  Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.

[9]  C. Broeck,et al.  TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries , 2013, 1311.0420.

[10]  C. Haster,et al.  DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE , 2016, 1604.04254.

[11]  V. Kalogera,et al.  Mapping Inspiral Rates on Population Synthesis Parameters , 2004, astro-ph/0408387.

[12]  Dimensional regularization of the gravitational interaction of point masses , 2001, gr-qc/0105038.

[13]  W. Bonnor,et al.  Gravitational Radiation , 1958, Nature.

[14]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[15]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.

[16]  M. Melamed Detection , 2021, SETI: Astronomy as a Contact Sport.

[17]  Jonathan R. Gair,et al.  Improving gravitational-wave parameter estimation using Gaussian process regression , 2015, 1509.04066.

[18]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[19]  The Ligo Scientific Collaboration,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.

[20]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[21]  John T. Whelan,et al.  Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.

[22]  B. Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.

[23]  R. Narayan,et al.  THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.

[24]  The First Stellar Binary Black Holes: The Strongest Gravitational Wave Burst Sources , 2004, astro-ph/0403361.

[25]  C. Broeck,et al.  Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations , 2011, 1111.5274.

[26]  Shaughnessy,et al.  GW 150914 : Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes , 2016 .

[27]  McMillan,et al.  Black Hole Mergers in the Universe , 1999, The Astrophysical journal.

[28]  B. A. Boom,et al.  GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .

[29]  P. Graff,et al.  Use of gravitational waves to measure alignment of spins in compact binaries , 2015 .

[30]  Albert A. Mullin,et al.  Extraction of signals from noise , 1970 .

[31]  L. Winter,et al.  Intermediate-mass black holes in AGN discs – II. Model predictions and observational constraints , 2014, 1403.6433.

[32]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[33]  A. Sesana The promise of multi-band gravitational wave astronomy , 2016, 1602.06951.

[34]  T. Damour,et al.  Effective one-body approach to general relativistic two-body dynamics , 1999 .

[35]  C. Will,et al.  Coalescing Binary Systems of Compact Objects to (Post)5/2‐Newtonian Order a , 1991 .

[36]  D. C. Robinson Uniqueness of the Kerr black hole , 1975 .

[37]  R. Webbink Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .

[38]  L. Pietronero,et al.  On the maximum mass of a neutron star , 1974 .

[39]  Brandon Carter,et al.  Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .

[40]  B. McKernan,et al.  MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES , 2015, 1511.00005.

[41]  Flanagan,et al.  The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.

[42]  Clifford M. Will,et al.  The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.

[43]  Bharath Pattabiraman,et al.  Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.

[44]  Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.

[45]  A. Nielsen Compact binary coalescence parameter estimations for 2.5 post-Newtonian aligned spinning waveforms , 2012, 1203.6603.

[46]  A. Sesana Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.

[47]  M. Mapelli Massive black hole binaries from runaway collisions: the impact of metallicity , 2016, 1604.03559.

[48]  H. Perets,et al.  Intermediate mass black holes in AGN discs – I. Production and growth , 2012, 1206.2309.

[49]  M. Miller,et al.  MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.

[50]  S. Fairhurst,et al.  Degeneracy between mass and spin in black-hole-binary waveforms , 2012, 1211.0546.

[51]  M. Vallisneri,et al.  LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms , 2007, 0707.2982.

[52]  M. Branchesi,et al.  Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.

[53]  Mansi M. Kasliwal,et al.  ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS , 2013, 1309.1554.

[54]  Leo P. Singer,et al.  WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .

[55]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[56]  N. Langer,et al.  A new route towards merging massive black holes , 2016, 1601.03718.

[57]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[58]  K. Cannon,et al.  Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation , 2015, 1504.04632.

[59]  F. Pretorius,et al.  Theoretical Physics Implications of the Binary Black-Hole Merger GW150914 , 2016 .

[60]  Adrian Chapman,et al.  Singular value decomposition applied to compact binary coalescence gravitational-wave signals , 2010 .

[61]  Bence Kocsis,et al.  Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.

[62]  Werner Israel,et al.  Event Horizons in Static Vacuum Space-Times , 1967 .

[63]  V. Lipunov,et al.  The first gravitational-wave burst GW150914, as predicted by the scenario machine , 2016, 1605.01604.

[64]  I. Mandel,et al.  Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.

[65]  A. Linde DIC in variable selection , 2005 .

[66]  F. Bauer,et al.  BlackCAT: A catalogue of stellar-mass black holes in X-ray transients , 2015, 1510.08869.

[67]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[68]  Aki Vehtari,et al.  Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.

[69]  Adam D. Myers,et al.  INFERRING THE ECCENTRICITY DISTRIBUTION , 2010, 1008.4146.

[70]  J. Veitch,et al.  Estimating parameters of coalescing compact binaries with proposed advanced detector networks , 2011, 1201.1195.

[71]  W. Marsden I and J , 2012 .

[72]  Sathyaprakash,et al.  Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise. , 1992, Physical review. D, Particles and fields.

[73]  Owen Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1996, Physical review. D, Particles and fields.

[74]  Yi Pan,et al.  Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism , 2013, 1307.6232.

[75]  José A. González,et al.  Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.

[76]  José A. González,et al.  Maximum kick from nonspinning black-hole binary inspiral. , 2007, Physical review letters.

[77]  I. Mandel,et al.  Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers , 2015, 1503.03172.

[78]  G. Gibbons Vacuum polarization and the spontaneous loss of charge by black holes , 1975 .

[79]  S. Fairhurst,et al.  Source localization with an advanced gravitational wave detector network , 2010, 1010.6192.

[80]  E. Poisson,et al.  Gravitational radiation from a particle in circular orbit around a black hole. I. Analytical results for the nonrotating case. , 1993, Physical review. D, Particles and fields.

[81]  E. Stanway,et al.  BPASS predictions for binary black hole mergers , 2016, 1602.03790.

[82]  R. Bork,et al.  Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy , 2016, 1604.00439.

[83]  Y. Zlochower,et al.  Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.

[84]  B. Iyer,et al.  The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.

[85]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[86]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[87]  Michael Boyle,et al.  Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration , 2013, 1307.5307.

[88]  Evolution of massive close binaries , 1976 .

[89]  M Hannam,et al.  Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.

[90]  Y. Wang,et al.  Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence , 2016, 1606.01262.

[91]  I. Mandel Parameter estimation on gravitational waves from multiple coalescing binaries , 2009, 0912.5531.

[92]  Alberto Vecchio,et al.  LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.

[93]  A. Vecchio,et al.  Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.

[94]  J. Gair,et al.  Counting and confusion: Bayesian rate estimation with multiple populations , 2013, 1302.5341.

[95]  K. Cannon,et al.  A method to estimate the significance of coincident gravitational-wave observations from compact binary coalescence , 2012, 1209.0718.

[96]  David W. Hogg,et al.  Distance measures in cosmology , 1999, astro-ph/9905116.

[97]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[98]  Bruce Allen χ2 time-frequency discriminator for gravitational wave detection , 2005 .

[99]  J. Lense,et al.  Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .

[100]  Edwin Thompson Jaynes,et al.  Probability theory , 2003 .

[101]  R. F. O’Connell,et al.  Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments , 1975 .

[102]  W. Farr,et al.  MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.

[103]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[104]  Robert L. Forward,et al.  Wideband laser-interferometer gravitational-radiation experiment , 1978 .

[105]  P. C. Peters Gravitational Radiation and the Motion of Two Point Masses , 1964 .

[106]  V. Raymond,et al.  Measuring the spin of black holes in binary systems using gravitational waves. , 2014, Physical review letters.

[107]  Gabriela Gonzalez,et al.  The LIGO Scientific Collaboration , 2015 .

[108]  I. Mandel,et al.  Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.

[109]  Michael Purrer,et al.  Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.

[110]  F. Ohme,et al.  Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter , 2014, 1408.1810.

[111]  Bernard J. Kelly,et al.  Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics , 2008, 0805.1428.

[112]  Blanchet,et al.  Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.

[113]  Frank Ohme,et al.  DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES , 2015, 1504.07802.

[114]  Michael Boyle,et al.  Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.

[115]  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.

[116]  J. Mathews,et al.  Gravitational radiation from point masses in a Keplerian orbit , 1963 .

[117]  R. Lynch,et al.  A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.

[118]  Michael Boyle,et al.  Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.

[119]  Luc Blanchet,et al.  Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.

[120]  C. Mishra,et al.  Testing general relativity using golden black-hole binaries , 2016, 1602.02453.

[121]  Y. Wang,et al.  The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 , 2016 .

[122]  Ulrike Goldschmidt,et al.  Three Hundred Years Of Gravitation , 2016 .

[123]  Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: further investigations , 2011, 1111.5274.

[124]  Blanchet,et al.  Hereditary effects in gravitational radiation. , 1992, Physical review. D, Particles and fields.

[125]  Triangulation of gravitational wave sources with a network of detectors , 2009 .

[126]  Larne Pekowsky,et al.  An improved pipeline to search for gravitational waves from compact binary coalescence , 2015 .

[127]  J. K. Blackburn,et al.  Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network , 2013, 1304.1775.

[128]  P. Jonker,et al.  Mass Measurements of Stellar and Intermediate-Mass Black Holes , 2013, Space Science Reviews.

[129]  Bernard F Schutz Gravitational Radiation , 2000 .

[130]  Samaya Nissanke,et al.  EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.

[131]  Steinn Sigurdsson,et al.  Primordial black holes in globular clusters , 1993, Nature.

[132]  Chris L. Fryer,et al.  DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.

[133]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[134]  D Huet,et al.  Tests of General Relativity with GW150914. , 2016, Physical review letters.

[135]  Thomas J. Loredo Accounting for Source Uncertainties in Analyses of Astronomical Survey Data , 2004 .

[136]  Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes , 2015, 1511.01431.

[137]  A. P. Lundgren,et al.  Improving the data quality of Advanced LIGO based on early engineering run results , 2015, 1508.07316.

[138]  J. Greve,et al.  Evolution of massive close binaries , 1976 .

[139]  B. S. Sathyaprakash,et al.  A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.

[140]  É. Racine Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.

[141]  Spin effects in the inspiral of coalescing compact binaries. , 1992, Physical review. D, Particles and fields.

[142]  S. Vitale Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors. , 2016, Physical review letters.

[143]  A. Lundgren,et al.  Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis , 2013, 1304.7017.

[144]  K. Cannon A Bayesian coincidence test for noise rejection in a gravitational-wave burst search , 2008 .

[145]  T. Littenberg,et al.  BASIC PARAMETER ESTIMATION OF BINARY NEUTRON STAR SYSTEMS BY THE ADVANCED LIGO/VIRGO NETWORK , 2013, 1309.3273.

[146]  Robert W. Taylor,et al.  ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .

[147]  Alessandro Bressan,et al.  The mass spectrum of compact remnants from the parsec stellar evolution tracks , 2015, 1505.05201.

[148]  Chris L. Fryer,et al.  Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.

[149]  Scott A. Hughes,et al.  Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates , 1998 .

[150]  P. Murdin MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .

[151]  Chris L. Fryer,et al.  THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.

[152]  G. Nelemans Galactic Binaries as Sources of Gravitational Waves , 2003, astro-ph/0310800.

[153]  P. Ajith,et al.  Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.

[154]  Thibault Damour,et al.  Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.

[155]  Frank Ohme,et al.  Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.

[156]  Thibault Damour,et al.  Transition from inspiral to plunge in binary black hole coalescences , 2000 .

[157]  D. Keitel,et al.  Determining the final spin of a binary black hole system including in-plane spins: Method and checks of accuracy , 2016 .

[158]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[159]  E. Berti,et al.  eLISA eccentricity measurements as tracers of binary black hole formation , 2016, 1605.01341.

[160]  I. Mandel,et al.  Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors. , 2015, Physical review letters.

[161]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.

[162]  P. Graff,et al.  PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS , 2015, 1508.05336.

[163]  F. Pretorius,et al.  Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework , 2009, 0909.3328.

[164]  N. Sago,et al.  Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries , 2022 .

[165]  J. Centrella THE ASTROPHYSICS OF GRAVITATIONAL WAVE SOURCES , 2003 .

[166]  B. Owen,et al.  Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.

[167]  Von Welch,et al.  Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.

[168]  Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. , 1995, Physical review. D, Particles and fields.

[169]  J. Gladstone,et al.  WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES , 2015, 1512.00778.

[170]  E. Pylyser,et al.  An evolutionary scenario for the black hole binary A0620-00. , 1987 .

[171]  B. S. Sathyaprakash,et al.  Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries , 2015, 1504.04766.

[172]  T. Bayes An essay towards solving a problem in the doctrine of chances , 2003 .

[173]  Thorne,et al.  Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.

[174]  Physical Review Letters 63 , 1989 .

[175]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[176]  S. McWilliams,et al.  Consistency of post-Newtonian waveforms with numerical relativity. , 2006, Physical review letters.

[177]  Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.

[178]  Balasubramanian,et al.  Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters. , 1995, Physical review. D, Particles and fields.

[179]  Finn,et al.  Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.

[180]  Alexander H. Nitz,et al.  Implementing a search for aligned-spin neutron star - black hole systems with advanced ground based gravitational wave detectors , 2014, 1405.6731.

[181]  I. Mandel,et al.  DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.

[182]  M. Purrer Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins , 2015, 1512.02248.

[183]  R. O’Shaughnessy,et al.  Multi-timescale analysis of phase transitions in precessing black-hole binaries , 2015, 1506.03492.

[184]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[185]  S. Privitera,et al.  Implementing a search for gravitational waves from binary black holes with nonprecessing spin , 2016 .

[186]  R. Schofield,et al.  Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.

[187]  C. Stivers Class , 2010, Yesterday's Tomorrow.

[188]  B. Metzger,et al.  Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.

[189]  Finn Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.

[190]  Werner Israel,et al.  Event horizons in static electrovac space-times , 1968 .

[191]  D Huet,et al.  GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.

[192]  Y. Wang,et al.  Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.

[193]  Cody Messick,et al.  Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.

[194]  Luc Blanchet,et al.  Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[195]  A. Tutukov,et al.  The merger rate of neutron star and black hole binaries , 1993 .

[196]  B. A. Boom,et al.  Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model , 2016, 1606.01210.

[197]  Blanchet,et al.  Detecting a tail effect in gravitational-wave experiments. , 1995, Physical review letters.

[198]  R. S. Hanni Limits on the charge of a collapsed object , 1982 .

[199]  S. Fairhurst,et al.  Comparison of gravitational wave detector network sky localization approximations , 2013, 1310.7454.

[200]  G. Schäfer,et al.  Gravitational wave tails and binary star systems , 1993 .

[201]  Z. Haiman,et al.  Gravitational wave background from Population III binary black holes consistent with cosmic reionization , 2016, 1603.06921.

[202]  Thibault Damour,et al.  Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.

[203]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[204]  C. Will,et al.  Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.

[205]  David Blair,et al.  Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, Classical and quantum gravity.

[206]  T. Bulik,et al.  Constraints on the Binary Evolution from Chirp Mass Measurements , 2003, astro-ph/0301470.

[207]  A. Buonanno,et al.  An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.

[208]  Sam T. Roweis,et al.  Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations , 2009, 0905.2979.

[209]  Probing the nonlinear structure of general relativity with black hole binaries , 2006, gr-qc/0604067.

[210]  Wiseman,et al.  Coalescing binary systems of compact objects to (post)5/2-Newtonian order. IV. The gravitational wave tail. , 1993, Physical review. D, Particles and fields.

[211]  I. Mandel,et al.  THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.

[212]  K. Hotokezaka,et al.  Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave , 2014, 1402.6672.

[213]  Ernst Nils Dorband,et al.  Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins , 2009, 0907.0462.

[214]  V. Springel,et al.  HYDRODYNAMIC MOVING-MESH SIMULATIONS OF THE COMMON ENVELOPE PHASE IN BINARY STELLAR SYSTEMS , 2015, 1512.04529.

[215]  L. M. M.-T. Theory of Probability , 1929, Nature.

[216]  T. Damour,et al.  Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.

[217]  V. Lipunov,et al.  First Gravitational-Wave Burst GW150914. Part I. Scenario Machine Prediction , 2016 .

[218]  Bernard F. Schutz,et al.  Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.

[219]  Tomasz Bulik,et al.  The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.

[220]  R. Bonnand,et al.  Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .

[221]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[222]  Friedrich W. Hehl,et al.  On the gravitational effects of rotating masses: The Thirring-Lense papers , 1984 .

[223]  P. Graff,et al.  Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.

[224]  A. V. Tutukov,et al.  Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .

[225]  Y. Zlochower,et al.  Remnant mass, spin, and recoil from spin aligned black-hole binaries , 2014, 1406.7295.

[226]  V. M. Lipunov,et al.  Formation and coalescence of relativistic binary stars: the effect of kick velocity , 1997, astro-ph/9702060.

[227]  Chris L. Fryer,et al.  THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES , 2014, 1403.0677.

[228]  I. Mandel,et al.  The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.

[229]  J. O. V. Eitch,et al.  University of Birmingham Parameter estimation on gravitational waves from neutron-star binaries with spinning components , 2016 .

[230]  C. Mishra,et al.  Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope , 2010, 1005.0304.