Binary Black Hole Mergers in the First Advanced LIGO Observing Run
暂无分享,去创建一个
B. A. Boom | N. M. Brown | H. N. Isa | J. R. Palamos | S. A. Usman | M. J. Szczepa'nczyk | C. Broeck | S. Klimenko | A. Mukherjee | S. Oh | M. Fejer | P. Couvares | A. Wade | J. Worden | P. Graff | J. Gair | S. Babak | E. Porter | N. Gehrels | G. Prodi | S. Fairhurst | A. Heptonstall | D. Hofman | P. Wessels | D. Keitel | D. Kelley | W. Kells | R. Kennedy | J. Key | F. Khalili | S. Khan | Z. Khan | E. Khazanov | N. Kijbunchoo | J. Kim | K. Kim | N. Kim | Y. Kim | E. King | P. King | J. Kissel | L. Kleybolte | S. Koehlenbeck | S. Koley | V. Kondrashov | A. Kontos | M. Korobko | W. Korth | I. Kowalska | D. Kozak | V. Kringel | B. Krishnan | C. Krueger | G. Kuehn | P. Kumar | L. Kuo | A. Kutynia | B. Lackey | M. Landry | B. Lantz | P. Lasky | A. Lazzarini | C. Lazzaro | P. Leaci | S. Leavey | E. Lebigot | C. Lee | H. Lee | H. Lee | K. Lee | M. Leonardi | J. Leong | N. Leroy | N. Letendre | Y. Levin | T. G. F. Li | A. Libson | T. Littenberg | N. Lockerbie | A. Lombardi | J. Lord | M. Lorenzini | V. Loriette | M. Lormand | G. Losurdo | J. Lough | A. Lundgren | R. Lynch | Y. Ma | B. Machenschalk | M. Macinnis | D. Macleod | F. Magaña-Sandoval | R. Magee | E. Majorana | I. Maksimovic | V. Malvezzi | N. Man | I. Mandel | V. Mandic | V. Mangano | G. Mansell | M. Manske | M. Mantovani | F. Marchesoni | F. Marion | A. Markosyan | E. Maros | F. Martelli | L. Martellini | I. Martin | D. Martynov | J. Marx | K. Mason | A. Masserot | T. Massinger | M. Masso-Reid | F. Matichard | L. Matone | N. Mavalvala | N. Mazumder | R. McCarthy | D. McClelland | S. McCormick | S. McGuire | G. McIntyre | J. McIver | S. McWilliams | D. Meacher | G. Meadors | J. Meidam | A. Melatos | G. Mendell | R. Mercer | M. Merzougui | S. Meshkov | C. Messenger | C. Messick | P. Meyers | F. Mezzani | H. Miao | H. Middleton | E. Mikhailov | J. Miller | M. Millhouse | Y. Minenkov | J. Ming | S. Mirshekari | C. Mishra | S. Mitra | V. Mitrofanov | G. Mitselmakher | R. Mittleman | A. Moggi | S. Mohapatra | M. Montani | B. Moore | C. Moore | D. Moraru | G. Moreno | S. Morriss | K. Mossavi | B. Mours | C. Mow-Lowry | G. Mueller | A. Muir | D. Mukherjee | S. Mukherjee | A. Mullavey | J. Munch | D. Murphy | P. Murray | A. Mytidis | I. Nardecchia | L. Naticchioni | R. Nayak | K. Nedkova | G. Nelemans | M. Neri | A. Neunzert | G. Newton | T. Nguyen | A. Nielsen | S. Nissanke | A. Nitz | F. Nocera | D. Nolting | M. Normandin | L. Nuttall | J. Oberling | E. Ochsner | E. Oelker | G. Ogin | J. Oh | F. Ohme | M. Oliver | P. Oppermann | R. Oram | H. Overmier | B. Owen | A. Pai | S. Pai | J. Palamos | O. Palashov | C. Palomba | A. Pal-Singh | C. Pankow | F. Pannarale | B. Pant | F. Paoletti | A. Paoli | M. Papa | H. Paris | W. Parker | D. Pascucci | A. Pasqualetti | R. Passaquieti | D. Passuello | Z. Patrick | B. Pearlstone | M. Pedraza | R. Pedurand | L. Pekowsky | A. Pele | S. Penn | A. Perreca | M. Phelps | O. Piccinni | M. Pichot | F. Piergiovanni | V. Pierro | G. Pillant | L. Pinard | I. Pinto | M. Pitkin | R. Poggiani | A. Post | J. Powell | J. Prasad | V. Predoi | T. Prestegard | L. Price | M. Prijatelj | M. Principe | S. Privitera | L. Prokhorov | M. Punturo | P. Puppo | H. Qi | J. Qin | V. Quetschke | E. Quintero | R. Quitzow-James | F. Raab | D. Rabeling | H. Radkins | P. Raffai | S. Raja | M. Rakhmanov | P. Rapagnani | V. Raymond | M. Razzano | V. Re | J. Read | C. Reed | T. Regimbau | L. Rei | S. Reid | D. Reitze | H. Rew | F. Ricci | K. Riles | N. Robertson | R. Robie | F. Robinet | A. Rocchi | L. Rolland | J. Rollins | V. Roma | R. Romano | G. Romanov | J. Romie | S. Rowan | P. Ruggi | S. Sachdev | T. Sadecki | L. Sadeghian | M. Saleem | F. Salemi | A. Samajdar | L. Sammut | E. Sanchez | V. Sandberg | B. Sandeen | J. Sanders | B. Sassolas | O. Sauter | R. Savage | A. Sawadsky | P. Schale | R. Schilling | J. Schmidt | P. Schmidt | R. Schnabel | R. Schofield | E. Schreiber | D. Schuette | B. Schutz | J. Scott | S. Scott | D. Sellers | D. Sentenac | V. Sequino | Y. Setyawati | D. Shaddock | M. Shahriar | M. Shaltev | B. Shapiro | P. Shawhan | A. Sheperd | D. Shoemaker | K. Siellez | X. Siemens | D. Sigg | A. Silva | A. Singer | L. Singer | A. Singh | R. Singh | A. Sintes | J. Smith | N. Smith | R. Smith | E. Son | B. Sorazu | F. Sorrentino | T. Souradeep | A. Srivastava | A. Staley | M. Steinke | J. Steinlechner | D. Steinmeyer | B. Stephens | R. Stone | N. Straniero | G. Stratta | N. Strauss | S. Strigin | R. Sturani | T. Summerscales | L. Sun | P. Sutton | B. Swinkels | M. Tacca | D. Talukder | D. Tanner | S. Tarabrin | A. Taracchini | R. Taylor | T. Theeg | M. Thirugnanasambandam | E. Thomas | M. Thomas | P. Thomas | K. Thorne | E. Thrane | V. Tiwari | C. Tomlinson | M. Tonelli | C. Torres | C. Torrie | F. Travasso | G. Traylor | D. Trifirò | M. Tringali | L. Trozzo | M. Tse | M. Turconi | D. Tuyenbayev | D. Ugolini | C. Unnikrishnan | A. Urban | H. Vahlbruch | G. Vajente | G. Valdes | N. Bakel | M. Beuzekom | J. Brand | L. Schaaf | J. Heijningen | A. Veggel | M. Vardaro | S. Vass | R. Vaulin | E. Huerta | The Ligo Scientific Collaboration | D. Holz | H. Chen | R. Abbott | T. Abbott | F. Acernese | K. Ackley | C. Adams | R. Adhikari | V. Adya | C. Affeldt | M. Agathos | K. Agatsuma | N. Aggarwal | O. Aguiar | L. Aiello | A. Ain | P. Ajith | A. Allocca | P. Altin | S. Anderson | W. Anderson | K. Arai | M. Araya | J. Areeda | S. Ascenzi | G. Ashton | S. Aston | P. Astone | P. Aufmuth | P. Bacon | M. Bader | P. Baker | F. Baldaccini | G. Ballardin | S. Ballmer | J. Barayoga | S. Barclay | B. Barish | D. Barker | F. Barone | B. Barr | L. Barsotti | M. Barsuglia | D. Barta | J. Bartlett | I. Bartos | R. Bassiri | A. Basti | M. Bazzan | M. Bejger | A. Bell | G. Bergmann | C. Berry | D. Bersanetti | A. Bertolini | J. Betzwieser | R. Bhandare | I. Bilenko | G. Billingsley | J. Birch | R. Birney | O. Birnholtz | S. Biscans | A. Bisht | M. Bitossi | J. Blackburn | C. Blair | D. Blair | R. Blair | S. Bloemen | M. Boer | G. Bogaert | F. Bondu | R. Bonnand | R. Bork | V. Boschi | S. Bose | Y. Bouffanais | A. Bozzi | C. Bradaschia | P. Brady | M. Branchesi | J. Brau | T. Briant | A. Brillet | M. Brinkmann | P. Brockill | A. Brooks | D. Brown | S. Brunett | A. Buikema | T. Bulik | H. Bulten | A. Buonanno | D. Buskulic | C. Buy | R. Byer | M. Cabero | L. Cadonati | G. Cagnoli | C. Cahillane | J. Bustillo | T. Callister | E. Calloni | J. Camp | K. Cannon | J. Cao | E. Capocasa | F. Carbognani | S. Caride | J. Diaz | C. Casentini | S. Caudill | M. Cavaglià | R. Cavalieri | G. Cella | G. Cerretani | E. Cesarini | S. Chamberlin | M. Chan | S. Chao | P. Charlton | É. Chassande-Mottin | B. Cheeseboro | Y. Chen | A. Chincarini | A. Chiummo | H. Cho | M. Cho | N. Christensen | Q. Chu | S. Chua | S. Chung | G. Ciani | F. Clara | J. Clark | F. Cleva | E. Coccia | P. Cohadon | C. Collette | L. Cominsky | M. Constancio | L. Conti | T. Corbitt | N. Cornish | A. Corsi | S. Cortese | C. Costa | M. Coughlin | S. Coughlin | J. Coulon | S. Countryman | E. Cowan | D. Coward | M. Cowart | D. Coyne | R. Coyne | J. Creighton | J. Cripe | S. Crowder | A. Cumming | L. Cunningham | E. Cuoco | T. Canton | S. Danilishin | S. D’Antonio | K. Danzmann | C. F. S. Costa | V. Dattilo | I. Dave | E. Daw | D. DeBra | J. Degallaix | M. D. Laurentis | W. D. Pozzo | T. Dent | R. Rosa | R. DeSalvo | S. Dhurandhar | L. Fiore | M. Giovanni | T. D. Girolamo | A. Lieto | S. D. Pace | I. Palma | F. Donovan | K. Dooley | S. Doravari | T. Downes | M. Drago | J. Driggers | S. Dwyer | T. Edo | M. Edwards | A. Effler | P. Ehrens | J. Eichholz | S. Eikenberry | T. Etzel | M. Evans | T. Evans | V. Fafone | H. Fair | X. Fan | S. Farinon | B. Farr | W. Farr | Marc Favata | M. Fays | I. Ferrante | F. Ferrini | F. Fidecaro | I. Fiori | D. Fiorucci | R. Fisher | R. Flaminio | M. Fletcher | H. Fong | J. Fournier | S. Frasca | F. Frasconi | Z. Frei | A. Freise | R. Frey | P. Fritschel | V. Frolov | P. Fulda | M. Fyffe | H. Gabbard | S. Gaebel | L. Gammaitoni | S. Gaonkar | F. Garufi | G. Gaur | G. Gemme | E. Génin | A. Gennai | L. Gergely | V. Germain | Abhirup Ghosh | A. Ghosh | S. Ghosh | J. Giaime | A. Giazotto | K. Gill | E. Goetz | R. Goetz | J. M. Castro | A. Gopakumar | M. Gorodetsky | S. Gossan | M. Gosselin | R. Gouaty | A. Grado | C. Graef | M. Granata | A. Grant | S. Gras | C. Gray | G. Greco | A. Green | P. Groot | H. Grote | S. Grunewald | G. Guidi | A. Gupta | M. Gupta | E. Gustafson | R. Gustafson | B. Hall | E. Hall | G. Hammond | M. Haney | M. Hanke | J. Hanks | C. Hanna | J. Hanson | T. Hardwick | K. Haris | J. Harms | G. Harry | I. Harry | C. Haster | K. Haughian | J. Healy | A. Heidmann | M. Heintze | H. Heitmann | G. Hemming | M. Hendry | I. Heng | J. Hennig | M. Heurs | S. Hild | D. Hoak | K. Holt | P. Hopkins | J. Hough | E. Howell | B. Hughey | S. Husa | S. Huttner | T. Huynh--Dinh | R. Inta | J. Isac | M. Isi | B. Iyer | T. Jacqmin | K. Jani | P. Jaranowski | D. Jones | R. Jones | R. Jonker | L. Ju | C. Kalaghatgi | V. Kalogera | S. Kandhasamy | G. Kang | J. Kanner | S. Kapadia | S. Karki | K. Karvinen | M. Kasprzack | W. Katzman | S. Kaufer | K. Kawabe | I. Khan | Chunglee Kim | W. Kim | R. Kumar | M. Laxen | A. Lenon | L. London | C. Lousto | H. Luck | L. M. Zertuche | S. Mastrogiovanni | D. McManus | T. Mcrae | E. Merilh | R. Metzdorff | L. Milano | A. Miller | A. Miller | N. Mukund | T. Nelson | B. O'reilly | R. O’Shaughnessy | D. Ottaway | B. Patricelli | H. Pfeiffer | P. Popolizio | O. Puncken | M. Purrer | C. Rajan | M. Rizzo | A. Rudiger | K. Ryan | M. Sakellariadou | L. Salconi | P. Saulson | A. Schonbeck | A. Sengupta | T. Shaffer | D. Shoemaker | M. Sieniawska | A. Singhal | B. Slagmolen | S. Stevenson | K. Strain | S. Sunil | S. Tiwari | K. Toland | Z. Tornasi | D. Toyra | D. Vander-Hyde | A. Vecchio | G. Vedovato | J. Veitch | P. Veitch | K. Venkateswara | D. Verkindt | F. Vetrano | D. Vine | J. Vinet | S. Vitale | T. Vo | H. Vocca | C. Vorvick | S. Vyatchanin | L. Wade | M. Wade | M. Walker | L. Wallace | S. Walsh | G. Wang | H. Wang | Y. Wang | R. Ward | J. Warner | M. Was | B. Weaver | L.-W. Wei | M. Weinert | A. Weinstein | R. Weiss | K. Wette | B. Whiting | A. Williamson | J. Willis | B. Willke | M. Wimmer | W. Winkler | C. Wipf | H. Wittel | G. Woan | J. Woehler | J. Wright | D. Wu | H. Yamamoto | C. Yancey | M. Yvert | M. Zanolin | J. Zendri | M. Zevin | L. Zhang | C. Zhao | M. Zhou | Z. Zhou | X. Zhu | M. Zucker | J. Zweizig | S. M'arka | T. Abbott | N. Arnaud | K. Arun | B. Berger | M. Bizouard | V. Brisson | F. Cavalier | M. Davier | S. Del'eglise | M. D'iaz | R. Essick | V. Frey | G. Gonz'alez | M. Hannam | P. Hello | D. Huet | K. Izumi | N. Johnson-McDaniel | F. K'ef'elian | A. Kr'olak | Z. M'arka | D. Rosi'nska | B. Sathyaprakash | A. Stuver | M. T'apai | M. Vas'uth | A. Vicer'e | L. Wen | J. Whelan | A. Zadro.zny | M. Abernathy | T. Adams | P. Addesso | B. Allen | C. Arceneaux | M. Ast | C. Aulbert | J. Batch | C. Baune | V. Bavigadda | S. Bhagwat | C. Biwer | O. Bock | C. Bogan | A. Bohé | C. Bond | V. Braginsky | D. Brown | C. Buchanan | C. Capano | C. Cepeda | C. Cheng | J. Chow | A. Colla | A. Conte | D. Cook | K. Craig | N. Darman | G. Davies | R. Day | G. Debreczeni | T. Denker | V. Dergachev | R. Derosa | V. Dolique | R. Douglas | R. Drever | M. Ducrot | H. Eggenstein | W. Engels | R. Everett | M. Factourovich | Q. Fang | H. Fehrmann | K. Giardina | A. Glaefke | L. Gondán | N. Gordon | X. Guo | K. Gushwa | J. Hacker | M. Hart | M. Hartman | E. Houston | S. Huang | N. Indik | D. Ingram | T. Isogai | S. Jawahar | W. Johnson | E. Katsavounidis | T. Kaur | M. Kehl | J. Lange | M. Mohan | J. O'Dell | K. Tokmakov | S. Vinciguerra | W. Vousden | M. Wang | X. Wang | T. Westphal | R. Williams | G. Wu | J. Yablon | W. Yam | H. Yu | L. Zangrando | M. Zhang | S. Zuraw | R. Prix | J. Broida | A. Dasgupta | S. De | J. George | Y. Hu | F. Jim'enez-Forteza | S. Kimbrell | C. Michel | B. Miller | H. Pan | L. Perri | M. Poe | S. Reyes | J. Romano | S. Steinlechner | S. Whitcomb | Y. Zhang | E. Fenyvesi | E. Ferreira | R. Devine | A. Virgilio | J. Henry | B. Klein | S. Qiu | D. Voss | M. Vallisneri | Y. Pan | L. Baiardi | P. Geng | H. Hamilton | H. Jang | L. Jian | C. Kim | J. Lewis | A. Sergeev | J. C. Diaz | J. C. Bustillo | Y. Hu | R. McCarthy | Chi-Woong Kim | T. McRae | H. Cho | T. Li | Y. Pan | A. Singh | P. Kumar | M. Zhou | D. Brown | S. Ghosh | C. Zhao | C. Zhao | N. Brown | S. Mcguire | G. Mcintyre | A. Bell | S. Walsh | T. D. Canton | L. V. D. Schaaf | J. V. Heijningen | A. V. Veggel | S. Anderson | C. Moore | L. Zhang | R. Taylor | S. Mitra | M. Gupta | D. Ingram | Archisman Ghosh | A. Cumming | T. Hardwick | R. Jones | K. Kawabe | J. Miller | D. Cook | J. Miller | L. Zhang | P. Thomas | M. Walker | D. Jones | E. Thomas | A. Srivastava | A. Ghosh | G. Hammond | K. Holt | J. Kissel | M. Landry | B. Lantz | J. Brau | J. R. Smith | X. Fan | S. Mccormick | B. O’Reilly
[1] N. Cornish,et al. Gravitational wave tests of strong field general relativity with binary inspirals: Realistic injections and optimal model selection , 2013, 1303.1185.
[2] T. Cokelaer. Gravitational waves from inspiralling compact binaries: Hexagonal template placement and its efficiency in detecting physical signals , 2007, 0706.4437.
[3] K. Chatziioannou,et al. SPIN-PRECESSION: BREAKING THE BLACK HOLE–NEUTRON STAR DEGENERACY , 2014, 1402.3581.
[4] Bruce Allen,et al. FINDCHIRP: an algorithm for detection of gravitational waves from inspiraling compact binaries , 2005, gr-qc/0509116.
[5] Frans Pretorius,et al. Evolution of binary black-hole spacetimes. , 2005, Physical review letters.
[6] Erik Katsavounidis,et al. LOCALIZATION OF SHORT DURATION GRAVITATIONAL-WAVE TRANSIENTS WITH THE EARLY ADVANCED LIGO AND VIRGO DETECTORS , 2014, 1409.2435.
[7] Gravitational radiation from inspiralling compact binaries completed at the third post-Newtonian order. , 2004, Physical review letters.
[8] Dae-Il Choi,et al. Gravitational-wave extraction from an inspiraling configuration of merging black holes. , 2005, Physical review letters.
[9] C. Broeck,et al. TIGER: A data analysis pipeline for testing the strong-field dynamics of general relativity with gravitational wave signals from coalescing compact binaries , 2013, 1311.0420.
[10] C. Haster,et al. DYNAMICAL FORMATION OF THE GW150914 BINARY BLACK HOLE , 2016, 1604.04254.
[11] V. Kalogera,et al. Mapping Inspiral Rates on Population Synthesis Parameters , 2004, astro-ph/0408387.
[12] Dimensional regularization of the gravitational interaction of point masses , 2001, gr-qc/0105038.
[13] W. Bonnor,et al. Gravitational Radiation , 1958, Nature.
[14] M. Tribus,et al. Probability theory: the logic of science , 2003 .
[15] Michael Purrer,et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. II. A phenomenological model for the advanced detector era , 2015, 1508.07253.
[16] M. Melamed. Detection , 2021, SETI: Astronomy as a Contact Sport.
[17] Jonathan R. Gair,et al. Improving gravitational-wave parameter estimation using Gaussian process regression , 2015, 1509.04066.
[18] D Huet,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .
[19] The Ligo Scientific Collaboration,et al. GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016, 1606.04855.
[20] P. Cochat,et al. Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.
[21] John T. Whelan,et al. Improving the sensitivity of a search for coalescing binary black holes with nonprecessing spins in gravitational wave data , 2013, 1310.5633.
[22] B. Sathyaprakash,et al. Choice of filters for the detection of gravitational waves from coalescing binaries. , 1991, Physical review. D, Particles and fields.
[23] R. Narayan,et al. THE BLACK HOLE MASS DISTRIBUTION IN THE GALAXY , 2010, 1006.2834.
[24] The First Stellar Binary Black Holes: The Strongest Gravitational Wave Burst Sources , 2004, astro-ph/0403361.
[25] C. Broeck,et al. Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: Further investigations , 2011, 1111.5274.
[26] Shaughnessy,et al. GW 150914 : Implications for the Stochastic Gravitational-Wave Background from Binary Black Holes , 2016 .
[27] McMillan,et al. Black Hole Mergers in the Universe , 1999, The Astrophysical journal.
[28] B. A. Boom,et al. GW150914: Implications for the stochastic gravitational wave background from binary black holes , 2016 .
[29] P. Graff,et al. Use of gravitational waves to measure alignment of spins in compact binaries , 2015 .
[30] Albert A. Mullin,et al. Extraction of signals from noise , 1970 .
[31] L. Winter,et al. Intermediate-mass black holes in AGN discs – II. Model predictions and observational constraints , 2014, 1403.6433.
[32] Ericka Stricklin-Parker,et al. Ann , 2005 .
[33] A. Sesana. The promise of multi-band gravitational wave astronomy , 2016, 1602.06951.
[34] T. Damour,et al. Effective one-body approach to general relativistic two-body dynamics , 1999 .
[35] C. Will,et al. Coalescing Binary Systems of Compact Objects to (Post)5/2‐Newtonian Order a , 1991 .
[36] D. C. Robinson. Uniqueness of the Kerr black hole , 1975 .
[37] R. Webbink. Double white dwarfs as progenitors of R Coronae Borealis stars and type I supernovae , 1984 .
[38] L. Pietronero,et al. On the maximum mass of a neutron star , 1974 .
[39] Brandon Carter,et al. Axisymmetric Black Hole Has Only Two Degrees of Freedom , 1971 .
[40] B. McKernan,et al. MIGRATION TRAPS IN DISKS AROUND SUPERMASSIVE BLACK HOLES , 2015, 1511.00005.
[41] Flanagan,et al. The last three minutes: Issues in gravitational-wave measurements of coalescing compact binaries. , 1992, Physical review letters.
[42] Clifford M. Will,et al. The Confrontation between General Relativity and Experiment , 2001, Living reviews in relativity.
[43] Bharath Pattabiraman,et al. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO. , 2015, Physical review letters.
[44] Measuring gravitational waves from binary black hole coalescences. I. Signal to noise for inspiral, merger, and ringdown , 1997, gr-qc/9701039.
[45] A. Nielsen. Compact binary coalescence parameter estimations for 2.5 post-Newtonian aligned spinning waveforms , 2012, 1203.6603.
[46] A. Sesana. Prospects for Multiband Gravitational-Wave Astronomy after GW150914. , 2016, Physical review letters.
[47] M. Mapelli. Massive black hole binaries from runaway collisions: the impact of metallicity , 2016, 1604.03559.
[48] H. Perets,et al. Intermediate mass black holes in AGN discs – I. Production and growth , 2012, 1206.2309.
[49] M. Miller,et al. MERGERS OF STELLAR-MASS BLACK HOLES IN NUCLEAR STAR CLUSTERS , 2008, 0804.2783.
[50] S. Fairhurst,et al. Degeneracy between mass and spin in black-hole-binary waveforms , 2012, 1211.0546.
[51] M. Vallisneri,et al. LISA detections of massive black hole inspirals: Parameter extraction errors due to inaccurate template waveforms , 2007, 0707.2982.
[52] M. Branchesi,et al. Dynamics of stellar black holes in young star clusters with different metallicities – II. Black hole–black hole binaries , 2014, 1404.7147.
[53] Mansi M. Kasliwal,et al. ON DISCOVERING ELECTROMAGNETIC EMISSION FROM NEUTRON STAR MERGERS: THE EARLY YEARS OF TWO GRAVITATIONAL WAVE DETECTORS , 2013, 1309.1554.
[54] Leo P. Singer,et al. WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .
[55] Erin Kara,et al. TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.
[56] N. Langer,et al. A new route towards merging massive black holes , 2016, 1601.03718.
[57] Flanagan,et al. Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.
[58] K. Cannon,et al. Likelihood-Ratio Ranking Statistic for Compact Binary Coalescence Candidates with Rate Estimation , 2015, 1504.04632.
[59] F. Pretorius,et al. Theoretical Physics Implications of the Binary Black-Hole Merger GW150914 , 2016 .
[60] Adrian Chapman,et al. Singular value decomposition applied to compact binary coalescence gravitational-wave signals , 2010 .
[61] Bence Kocsis,et al. Rapid and Bright Stellar-mass Binary Black Hole Mergers in Active Galactic Nuclei , 2016, 1602.03831.
[62] Werner Israel,et al. Event Horizons in Static Vacuum Space-Times , 1967 .
[63] V. Lipunov,et al. The first gravitational-wave burst GW150914, as predicted by the scenario machine , 2016, 1605.01604.
[64] I. Mandel,et al. Gravitational-Wave Astronomy with Inspiral Signals of Spinning Compact-Object Binaries , 2007, 0710.1897.
[65] A. Linde. DIC in variable selection , 2005 .
[66] F. Bauer,et al. BlackCAT: A catalogue of stellar-mass black holes in X-ray transients , 2015, 1510.08869.
[67] B. A. Boom,et al. ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .
[68] Aki Vehtari,et al. Understanding predictive information criteria for Bayesian models , 2013, Statistics and Computing.
[69] Adam D. Myers,et al. INFERRING THE ECCENTRICITY DISTRIBUTION , 2010, 1008.4146.
[70] J. Veitch,et al. Estimating parameters of coalescing compact binaries with proposed advanced detector networks , 2011, 1201.1195.
[71] W. Marsden. I and J , 2012 .
[72] Sathyaprakash,et al. Choice of filters for the detection of gravitational waves from coalescing binaries. II. Detection in colored noise. , 1992, Physical review. D, Particles and fields.
[73] Owen. Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1996, Physical review. D, Particles and fields.
[74] Yi Pan,et al. Inspiral-merger-ringdown waveforms of spinning, precessing black-hole binaries in the effective-one-body formalism , 2013, 1307.6232.
[75] José A. González,et al. Inspiral, merger, and ringdown of unequal mass black hole binaries: A multipolar analysis , 2007, gr-qc/0703053.
[76] José A. González,et al. Maximum kick from nonspinning black-hole binary inspiral. , 2007, Physical review letters.
[77] I. Mandel,et al. Distinguishing types of compact-object binaries using the gravitational-wave signatures of their mergers , 2015, 1503.03172.
[78] G. Gibbons. Vacuum polarization and the spontaneous loss of charge by black holes , 1975 .
[79] S. Fairhurst,et al. Source localization with an advanced gravitational wave detector network , 2010, 1010.6192.
[80] E. Poisson,et al. Gravitational radiation from a particle in circular orbit around a black hole. I. Analytical results for the nonrotating case. , 1993, Physical review. D, Particles and fields.
[81] E. Stanway,et al. BPASS predictions for binary black hole mergers , 2016, 1602.03790.
[82] R. Bork,et al. Sensitivity of the Advanced LIGO detectors at the beginning of gravitational wave astronomy , 2016, 1604.00439.
[83] Y. Zlochower,et al. Accurate evolutions of orbiting black-hole binaries without excision. , 2006, Physical review letters.
[84] B. Iyer,et al. The third post-Newtonian gravitational wave polarizations and associated spherical harmonic modes for inspiralling compact binaries in quasi-circular orbits , 2008, 0802.1249.
[85] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[86] Richard O'Shaughnessy,et al. Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.
[87] Michael Boyle,et al. Error-analysis and comparison to analytical models of numerical waveforms produced by the NRAR Collaboration , 2013, 1307.5307.
[88] Evolution of massive close binaries , 1976 .
[89] M Hannam,et al. Inspiral-merger-ringdown waveforms for black-hole binaries with nonprecessing spins. , 2009, Physical review letters.
[90] Y. Wang,et al. Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence , 2016, 1606.01262.
[91] I. Mandel. Parameter estimation on gravitational waves from multiple coalescing binaries , 2009, 0912.5531.
[92] Alberto Vecchio,et al. LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.
[93] A. Vecchio,et al. Bayesian coherent analysis of in-spiral gravitational wave signals with a detector network , 2009, 0911.3820.
[94] J. Gair,et al. Counting and confusion: Bayesian rate estimation with multiple populations , 2013, 1302.5341.
[95] K. Cannon,et al. A method to estimate the significance of coincident gravitational-wave observations from compact binary coalescence , 2012, 1209.0718.
[96] David W. Hogg,et al. Distance measures in cosmology , 1999, astro-ph/9905116.
[97] Y. Wang,et al. GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..
[98] Bruce Allen. χ2 time-frequency discriminator for gravitational wave detection , 2005 .
[99] J. Lense,et al. Über den Einfluß der Eigenrotation der Zentralkörper auf die Bewegung der Planeten und Monde nach der Einsteinschen Gravitationstheorie , 1918 .
[100] Edwin Thompson Jaynes,et al. Probability theory , 2003 .
[101] R. F. O’Connell,et al. Gravitational two-body problem with arbitrary masses, spins, and quadrupole moments , 1975 .
[102] W. Farr,et al. MASS MEASUREMENTS OF BLACK HOLES IN X-RAY TRANSIENTS: IS THERE A MASS GAP? , 2012, 1205.1805.
[103] Kevin Barraclough,et al. I and i , 2001, BMJ : British Medical Journal.
[104] Robert L. Forward,et al. Wideband laser-interferometer gravitational-radiation experiment , 1978 .
[105] P. C. Peters. Gravitational Radiation and the Motion of Two Point Masses , 1964 .
[106] V. Raymond,et al. Measuring the spin of black holes in binary systems using gravitational waves. , 2014, Physical review letters.
[107] Gabriela Gonzalez,et al. The LIGO Scientific Collaboration , 2015 .
[108] I. Mandel,et al. Merging binary black holes formed through chemically homogeneous evolution in short-period stellar binaries , 2015, 1601.00007.
[109] Michael Purrer,et al. Frequency-domain gravitational waves from nonprecessing black-hole binaries. I. New numerical waveforms and anatomy of the signal , 2015, 1508.07250.
[110] F. Ohme,et al. Towards models of gravitational waveforms from generic binaries: II. Modelling precession effects with a single effective precession parameter , 2014, 1408.1810.
[111] Bernard J. Kelly,et al. Mergers of non-spinning black-hole binaries: Gravitational radiation characteristics , 2008, 0805.1428.
[112] Blanchet,et al. Gravitational-radiation damping of compact binary systems to second post-Newtonian order. , 1995, Physical review letters.
[113] Frank Ohme,et al. DISTINGUISHING COMPACT BINARY POPULATION SYNTHESIS MODELS USING GRAVITATIONAL WAVE OBSERVATIONS OF COALESCING BINARY BLACK HOLES , 2015, 1504.07802.
[114] Michael Boyle,et al. Catalog of 174 binary black hole simulations for gravitational wave astronomy. , 2013, Physical review letters.
[115] Coalescing binary systems of compact objects to (post)5/2-Newtonian order. V. Spin effects. , 1995, Physical review. D, Particles and fields.
[116] J. Mathews,et al. Gravitational radiation from point masses in a Keplerian orbit , 1963 .
[117] R. Lynch,et al. A Massive Pulsar in a Compact Relativistic Binary , 2013, Science.
[118] Michael Boyle,et al. Effective-one-body model for black-hole binaries with generic mass ratios and spins , 2013, Physical Review D.
[119] Luc Blanchet,et al. Gravitational waveforms from inspiralling compact binaries to second-post-Newtonian order , 1996, gr-qc/9602024.
[120] C. Mishra,et al. Testing general relativity using golden black-hole binaries , 2016, 1602.02453.
[121] Y. Wang,et al. The Rate of Binary Black Hole Mergers Inferred from Advanced LIGO Observations Surrounding GW150914 , 2016 .
[122] Ulrike Goldschmidt,et al. Three Hundred Years Of Gravitation , 2016 .
[123] Towards a generic test of the strong field dynamics of general relativity using compact binary coalescence: further investigations , 2011, 1111.5274.
[124] Blanchet,et al. Hereditary effects in gravitational radiation. , 1992, Physical review. D, Particles and fields.
[125] Triangulation of gravitational wave sources with a network of detectors , 2009 .
[126] Larne Pekowsky,et al. An improved pipeline to search for gravitational waves from compact binary coalescence , 2015 .
[127] J. K. Blackburn,et al. Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network , 2013, 1304.1775.
[128] P. Jonker,et al. Mass Measurements of Stellar and Intermediate-Mass Black Holes , 2013, Space Science Reviews.
[129] Bernard F Schutz. Gravitational Radiation , 2000 .
[130] Samaya Nissanke,et al. EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS , 2009, 0904.1017.
[131] Steinn Sigurdsson,et al. Primordial black holes in globular clusters , 1993, Nature.
[132] Chris L. Fryer,et al. DOUBLE COMPACT OBJECTS. III. GRAVITATIONAL-WAVE DETECTION RATES , 2014, 1405.7016.
[133] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[134] D Huet,et al. Tests of General Relativity with GW150914. , 2016, Physical review letters.
[135] Thomas J. Loredo. Accounting for Source Uncertainties in Analyses of Astronomical Survey Data , 2004 .
[136] Inference on gravitational waves from coalescences of stellar-mass compact objects and intermediate-mass black holes , 2015, 1511.01431.
[137] A. P. Lundgren,et al. Improving the data quality of Advanced LIGO based on early engineering run results , 2015, 1508.07316.
[138] J. Greve,et al. Evolution of massive close binaries , 1976 .
[139] B. S. Sathyaprakash,et al. A template bank to search for gravitational waves from inspiralling compact binaries: I. Physical models , 2006, gr-qc/0604037.
[140] É. Racine. Analysis of spin precession in binary black hole systems including quadrupole-monopole interaction , 2008, 0803.1820.
[141] Spin effects in the inspiral of coalescing compact binaries. , 1992, Physical review. D, Particles and fields.
[142] S. Vitale. Multiband Gravitational-Wave Astronomy: Parameter Estimation and Tests of General Relativity with Space- and Ground-Based Detectors. , 2016, Physical review letters.
[143] A. Lundgren,et al. Statistical and systematic errors for gravitational-wave inspiral signals: A principal component analysis , 2013, 1304.7017.
[144] K. Cannon. A Bayesian coincidence test for noise rejection in a gravitational-wave burst search , 2008 .
[145] T. Littenberg,et al. BASIC PARAMETER ESTIMATION OF BINARY NEUTRON STAR SYSTEMS BY THE ADVANCED LIGO/VIRGO NETWORK , 2013, 1309.3273.
[146] Robert W. Taylor,et al. ASTROPHYSICAL IMPLICATIONS OF THE BINARY BLACK HOLE MERGER GW150914 , 2016 .
[147] Alessandro Bressan,et al. The mass spectrum of compact remnants from the parsec stellar evolution tracks , 2015, 1505.05201.
[148] Chris L. Fryer,et al. Common envelope evolution: where we stand and how we can move forward , 2012, The Astronomy and Astrophysics Review.
[149] Scott A. Hughes,et al. Measuring gravitational waves from binary black hole coalescences. II. The waves’ information and its extraction, with and without templates , 1998 .
[150] P. Murdin. MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY , 2005 .
[151] Chris L. Fryer,et al. THE EFFECT OF METALLICITY ON THE DETECTION PROSPECTS FOR GRAVITATIONAL WAVES , 2010, 1004.0386.
[152] G. Nelemans. Galactic Binaries as Sources of Gravitational Waves , 2003, astro-ph/0310800.
[153] P. Ajith,et al. Matching post-Newtonian and numerical relativity waveforms: Systematic errors and a new phenomenological model for nonprecessing black hole binaries , 2010, 1005.3306.
[154] Thibault Damour,et al. Improved analytical description of inspiralling and coalescing black-hole binaries , 2009, 0902.0136.
[155] Frank Ohme,et al. Twist and shout: A simple model of complete precessing black-hole-binary gravitational waveforms , 2013, 1308.3271.
[156] Thibault Damour,et al. Transition from inspiral to plunge in binary black hole coalescences , 2000 .
[157] D. Keitel,et al. Determining the final spin of a binary black hole system including in-plane spins: Method and checks of accuracy , 2016 .
[158] R. Blandford,et al. Electromagnetic extraction of energy from Kerr black holes , 1977 .
[159] E. Berti,et al. eLISA eccentricity measurements as tracers of binary black hole formation , 2016, 1605.01341.
[160] I. Mandel,et al. Measuring Intermediate-Mass Black-Hole Binaries with Advanced Gravitational Wave Detectors. , 2015, Physical review letters.
[161] I. Mandel,et al. DOUBLE COMPACT OBJECTS. I. THE SIGNIFICANCE OF THE COMMON ENVELOPE ON MERGER RATES , 2012, 1202.4901.
[162] P. Graff,et al. PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS , 2015, 1508.05336.
[163] F. Pretorius,et al. Fundamental theoretical bias in gravitational wave astrophysics and the parametrized post-Einsteinian framework , 2009, 0909.3328.
[164] N. Sago,et al. Improved resummation of post-Newtonian multipolar waveforms from circularized compact binaries , 2022 .
[165] J. Centrella. THE ASTROPHYSICS OF GRAVITATIONAL WAVE SOURCES , 2003 .
[166] B. Owen,et al. Matched filtering of gravitational waves from inspiraling compact binaries: Computational cost and template placement , 1998, gr-qc/9808076.
[167] Von Welch,et al. Reproducing GW150914: The First Observation of Gravitational Waves From a Binary Black Hole Merger , 2016, Computing in Science & Engineering.
[168] Gravitational waves from inspiraling compact binaries: Parameter estimation using second-post-Newtonian waveforms. , 1995, Physical review. D, Particles and fields.
[169] J. Gladstone,et al. WATCHDOG: A COMPREHENSIVE ALL-SKY DATABASE OF GALACTIC BLACK HOLE X-RAY BINARIES , 2015, 1512.00778.
[170] E. Pylyser,et al. An evolutionary scenario for the black hole binary A0620-00. , 1987 .
[171] B. S. Sathyaprakash,et al. Missing Link: Bayesian detection and measurement of intermediate-mass black-hole binaries , 2015, 1504.04766.
[172] T. Bayes. An essay towards solving a problem in the doctrine of chances , 2003 .
[173] Thorne,et al. Spin-induced orbital precession and its modulation of the gravitational waveforms from merging binaries. , 1994, Physical review. D, Particles and fields.
[174] Physical Review Letters 63 , 1989 .
[175] N. M. Brown,et al. Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.
[176] S. McWilliams,et al. Consistency of post-Newtonian waveforms with numerical relativity. , 2006, Physical review letters.
[177] Galactic distribution of merging neutron stars and black holes – prospects for short gamma-ray burst progenitors and LIGO/VIRGO , 2003, astro-ph/0303227.
[178] Balasubramanian,et al. Gravitational waves from coalescing binaries: Detection strategies and Monte Carlo estimation of parameters. , 1995, Physical review. D, Particles and fields.
[179] Finn,et al. Observing binary inspiral in gravitational radiation: One interferometer. , 1993, Physical review. D, Particles and fields.
[180] Alexander H. Nitz,et al. Implementing a search for aligned-spin neutron star - black hole systems with advanced ground based gravitational wave detectors , 2014, 1405.6731.
[181] I. Mandel,et al. DOUBLE COMPACT OBJECTS. II. COSMOLOGICAL MERGER RATES , 2013, 1308.1546.
[182] M. Purrer. Frequency domain reduced order model of aligned-spin effective-one-body waveforms with generic mass-ratios and spins , 2015, 1512.02248.
[183] R. O’Shaughnessy,et al. Multi-timescale analysis of phase transitions in precessing black-hole binaries , 2015, 1506.03492.
[184] Bradley P. Carlin,et al. Bayesian measures of model complexity and fit , 2002 .
[185] S. Privitera,et al. Implementing a search for gravitational waves from binary black holes with nonprecessing spin , 2016 .
[186] R. Schofield,et al. Environmental influences on the LIGO gravitational wave detectors during the 6th science run , 2014, 1409.5160.
[187] C. Stivers. Class , 2010, Yesterday's Tomorrow.
[188] B. Metzger,et al. Assisted inspirals of stellar mass black holes embedded in AGN discs: solving the ‘final au problem’ , 2016, 1602.04226.
[189] Finn. Detection, measurement, and gravitational radiation. , 1992, Physical review. D, Particles and fields.
[190] Werner Israel,et al. Event horizons in static electrovac space-times , 1968 .
[191] D Huet,et al. GW150914: The Advanced LIGO Detectors in the Era of First Discoveries. , 2016, Physical review letters.
[192] Y. Wang,et al. Upper limits on the rates of binary neutron star and neutron-star--black-hole mergers from Advanced LIGO's first observing run , 2016, 1607.07456.
[193] Cody Messick,et al. Analysis framework for the prompt discovery of compact binary mergers in gravitational-wave data , 2016, 1604.04324.
[194] Luc Blanchet,et al. Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.
[195] A. Tutukov,et al. The merger rate of neutron star and black hole binaries , 1993 .
[196] B. A. Boom,et al. Improved Analysis of GW150914 Using a Fully Spin-Precessing Waveform Model , 2016, 1606.01210.
[197] Blanchet,et al. Detecting a tail effect in gravitational-wave experiments. , 1995, Physical review letters.
[198] R. S. Hanni. Limits on the charge of a collapsed object , 1982 .
[199] S. Fairhurst,et al. Comparison of gravitational wave detector network sky localization approximations , 2013, 1310.7454.
[200] G. Schäfer,et al. Gravitational wave tails and binary star systems , 1993 .
[201] Z. Haiman,et al. Gravitational wave background from Population III binary black holes consistent with cosmic reionization , 2016, 1603.06921.
[202] Thibault Damour,et al. Coalescence of two spinning black holes: an effective one-body approach , 2001, gr-qc/0103018.
[203] P. Graff,et al. PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.
[204] C. Will,et al. Gravitational-wave spectroscopy of massive black holes with the space interferometer LISA , 2005, gr-qc/0512160.
[205] David Blair,et al. Characterization of transient noise in Advanced LIGO relevant to gravitational wave signal GW150914 , 2016, Classical and quantum gravity.
[206] T. Bulik,et al. Constraints on the Binary Evolution from Chirp Mass Measurements , 2003, astro-ph/0301470.
[207] A. Buonanno,et al. An improved effective-one-body Hamiltonian for spinning black-hole binaries , 2009, 0912.3517.
[208] Sam T. Roweis,et al. Extreme deconvolution: Inferring complete distribution functions from noisy, heterogeneous and incomplete observations , 2009, 0905.2979.
[209] Probing the nonlinear structure of general relativity with black hole binaries , 2006, gr-qc/0604067.
[210] Wiseman,et al. Coalescing binary systems of compact objects to (post)5/2-Newtonian order. IV. The gravitational wave tail. , 1993, Physical review. D, Particles and fields.
[211] I. Mandel,et al. THE MASS DISTRIBUTION OF STELLAR-MASS BLACK HOLES , 2010, 1011.1459.
[212] K. Hotokezaka,et al. Possible indirect confirmation of the existence of Pop III massive stars by gravitational wave , 2014, 1402.6672.
[213] Ernst Nils Dorband,et al. Gravitational-wave detectability of equal-mass black-hole binaries with aligned spins , 2009, 0907.0462.
[214] V. Springel,et al. HYDRODYNAMIC MOVING-MESH SIMULATIONS OF THE COMMON ENVELOPE PHASE IN BINARY STELLAR SYSTEMS , 2015, 1512.04529.
[215] L. M. M.-T.. Theory of Probability , 1929, Nature.
[216] T. Damour,et al. Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling , 2008, 0803.0915.
[217] V. Lipunov,et al. First Gravitational-Wave Burst GW150914. Part I. Scenario Machine Prediction , 2016 .
[218] Bernard F. Schutz,et al. Networks of gravitational wave detectors and three figures of merit , 2011, 1102.5421.
[219] Tomasz Bulik,et al. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range , 2016, Nature.
[220] R. Bonnand,et al. Observing gravitational-wave transient GW150914 with minimal assumptions , 2016 .
[221] Philip Graff,et al. THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.
[222] Friedrich W. Hehl,et al. On the gravitational effects of rotating masses: The Thirring-Lense papers , 1984 .
[223] P. Graff,et al. Parameter estimation for compact binaries with ground-based gravitational-wave observations using the LALInference software library , 2014, 1409.7215.
[224] A. V. Tutukov,et al. Supernovae of type I as end products of the evolution of binaries with components of moderate initial mass (M< or approx. =9 M/sub sun/) , 1984 .
[225] Y. Zlochower,et al. Remnant mass, spin, and recoil from spin aligned black-hole binaries , 2014, 1406.7295.
[226] V. M. Lipunov,et al. Formation and coalescence of relativistic binary stars: the effect of kick velocity , 1997, astro-ph/9702060.
[227] Chris L. Fryer,et al. THE FORMATION AND GRAVITATIONAL-WAVE DETECTION OF MASSIVE STELLAR BLACK HOLE BINARIES , 2014, 1403.0677.
[228] I. Mandel,et al. The chemically homogeneous evolutionary channel for binary black hole mergers: rates and properties of gravitational-wave events detectable by advanced LIGO , 2016, 1603.02291.
[229] J. O. V. Eitch,et al. University of Birmingham Parameter estimation on gravitational waves from neutron-star binaries with spinning components , 2016 .
[230] C. Mishra,et al. Parametrized tests of post-Newtonian theory using Advanced LIGO and Einstein Telescope , 2010, 1005.0304.