Recent Advances in Computer Architecture: The Opportunities and Challenges for Provenance

In recent years several hardware and systems fields have made advances in technology that open new opportunities and challenges for provenance systems. In this paper we look at such technologies and discuss the implications they have for provenance. First, we discuss processor and memory controller technologies that enable fine-grained lineage capture, resulting in more precise and accurate provenance. Then, we look at programmable storage, 3D memory and co-processor technologies discussing how lineage capture in these heterogeneous environments results in richer and more complete provenance. We finally look at technological advances in the field of networking, namely NFV and SDN, discussing how these technologies enable easier provenance capture in the network.

[1]  Fernando M. V. Ramos,et al.  Software-Defined Networking: A Comprehensive Survey , 2014, Proceedings of the IEEE.

[2]  Jaewook Shin,et al.  Mapping Irregular Applications to DIVA, a PIM-based Data-Intensive Architecture , 1999, ACM/IEEE SC 1999 Conference (SC'99).

[3]  Lui Sha,et al.  Memory Heat Map: Anomaly detection in real-time embedded systems using memory behavior , 2015, 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC).

[4]  Katherine Yelick,et al.  A Case for Intelligent RAM: IRAM , 1997 .

[5]  Engin Ipek,et al.  PARDIS: A programmable memory controller for the DDRx interfacing standards , 2012, 2012 39th Annual International Symposium on Computer Architecture (ISCA).

[6]  Joonyoung Kim,et al.  HBM: Memory solution for bandwidth-hungry processors , 2014, 2014 IEEE Hot Chips 26 Symposium (HCS).

[7]  David J. DeWitt,et al.  Query processing on smart SSDs: opportunities and challenges , 2013, SIGMOD '13.

[8]  Adriane Chapman,et al.  Capturing Provenance in the Wild , 2010, IPAW.

[9]  Seungjoon Lee,et al.  Network function virtualization: Challenges and opportunities for innovations , 2015, IEEE Communications Magazine.

[10]  Sally A. McKee,et al.  Hitting the memory wall: implications of the obvious , 1995, CARN.

[11]  IpekEngin,et al.  A programmable memory controller for the DDRx interfacing standards , 2013 .

[12]  Katherine Yelick,et al.  A Case for Intelligent DRAM: IRAM , 1998 .

[13]  Adriane Chapman,et al.  Provenance Capture Disparities Highlighted through Datasets , 2014, TAPP.

[14]  Steven Swanson,et al.  Near-Data Processing: Insights from a MICRO-46 Workshop , 2014, IEEE Micro.

[15]  Margo I. Seltzer,et al.  A General-Purpose Provenance Library , 2012, TaPP.

[16]  Longbing Cao Data science , 2017, Commun. ACM.

[17]  Nick McKeown,et al.  I Know What Your Packet Did Last Hop: Using Packet Histories to Troubleshoot Networks , 2014, NSDI.

[18]  Rajesh Gupta,et al.  Minerva: Accelerating Data Analysis in Next-Generation SSDs , 2013, 2013 IEEE 21st Annual International Symposium on Field-Programmable Custom Computing Machines.

[19]  Andy Hopper,et al.  OPUS: A Lightweight System for Observational Provenance in User Space , 2013, TaPP.

[20]  Ashish Gehani,et al.  SPADE: Support for Provenance Auditing in Distributed Environments , 2012, Middleware.

[21]  M. Breitwisch Phase Change Memory , 2008, 2008 International Interconnect Technology Conference.

[22]  Gabriel H. Loh Nuwan Jayasena Mark H. Oskin Mark Nutter Da Ignatowski A Processing-in-Memory Taxonomy and a Case for Studying Fixed-function PIM , 2013 .

[23]  Yang Liu,et al.  Willow: A User-Programmable SSD , 2014, OSDI.

[24]  Margo I. Seltzer,et al.  Provenance-Aware Storage Systems , 2006, USENIX ATC, General Track.