지역 전문가의 앙상블 학습

본 논문에서는 지역 전문가를 이용한 새로운 앙상블 방법을 제시하고자 한다. 이 앙상블 방법에서는 학습데이타를 분할하여 속성 공간의 서로 다른 지역을 이용하여 전문가를 학습시킨다. 새로운 데이타를 분류할 때에는 그 데이타가 속한 지역을 담당하는 전문가들로 가중치 투표를 한다. UCI 기계 학습 데이타 저장소에 있는 10개의 데이타를 이용하여 단일 분류기, Bagging, Adaboost와 정확도를 비교하였다. 학습 알고리즘으로는 SVM, Naive Bayes, C4.5를 사용하였다. 그 결과 지역 전문가의 앙상블 학습 방법이 C4.5를 학습 알고리즘으로 사용한 Bagging, Adaboost와는 비슷한 성능을 보였으며 나머지 분류기보다는 좋은 성능을 보였다.