Stability issues in error control coding in the complex field, interpolation, and frame bounds

We give bounds for the eigenvalues and condition number of a matrix, with applications to error control coding in the complex field, spectrum analysis, the missing data problem, interpolation, and the determination of discrete finite frame bounds.

[1]  D. Slepian Prolate spheroidal wave functions, fourier analysis, and uncertainty — V: the discrete case , 1978, The Bell System Technical Journal.

[2]  James M. Varah,et al.  The prolate matrix , 1993 .

[3]  Paulo Jorge S. G. Ferreira The eigenvalues of matrices that occur in certain interpolation problems , 1997, IEEE Trans. Signal Process..

[4]  T. Marshall,et al.  Coding of Real-Number Sequences for Error Correction: A Digital Signal Processing Problem , 1984, IEEE J. Sel. Areas Commun..

[5]  Nikola Rozic IMAGE/VIDEO COMMUNICATIONS : JOINT SOURCE/CHANNEL CODING , 1999 .

[6]  Paulo Jorge S. G. Ferreira,et al.  Noniterative and fast iterative methods for interpolation and extrapolation , 1994, IEEE Trans. Signal Process..

[7]  U. Grenander,et al.  Toeplitz Forms And Their Applications , 1958 .

[8]  Paulo Jorge S. G. Ferreira,et al.  Interpolation in the time and frequency domains , 1996, IEEE Signal Processing Letters.

[9]  Paulo Jorge S. G. Ferreira,et al.  Interpolation, spectrum analysis, error-control coding, and fault-tolerant computing , 1997, 1997 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[10]  Paulo Jorge S. G. Ferreira The stability of a procedure for the recovery of lost samples in band-limited signals , 1994, Signal Process..

[11]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[12]  Nikola Rozic Image/video communications: joint source/channel coding , 1999, Int. J. Commun. Syst..