Ferrite-based metamaterial microwave absorber with absorption frequency magnetically tunable in a wide range

[1]  Houtong Chen Interference theory of metamaterial perfect absorbers. , 2011, Optics Express.

[2]  Patrick Hourquebie,et al.  Microwave absorbing materials based on conducting polymers , 1993 .

[3]  A. Heuberger,et al.  Integrated RF transmitter based on SAW oscillator , 1997, Proceedings of the 23rd European Solid-State Circuits Conference.

[4]  M. H. N. Famili,et al.  The relationship between electromagnetic absorption properties and cell structure of poly(methyl methacrylate)/multi-walled carbon nanotube composite foams , 2016 .

[5]  Koichiro Inomata,et al.  Microwave absorption properties of Ba M-type ferrite prepared by a modified coprecipitation method , 2005 .

[6]  Ji Zhou,et al.  Magnetically tunable Mie resonance-based dielectric metamaterials , 2014, Scientific Reports.

[7]  Willie J Padilla,et al.  Perfect metamaterial absorber. , 2008, Physical review letters.

[8]  T. Cui,et al.  Ultrathin multiband gigahertz metamaterial absorbers , 2011 .

[9]  Hamish Meikle,et al.  Modern Radar Systems , 2001 .

[10]  A. Lavrinenko,et al.  Graphene metamaterials based tunable terahertz absorber: effective surface conductivity approach. , 2013, Optics express.

[11]  Sameer Sonkusale,et al.  Microwave diode switchable metamaterial reflector/absorber , 2013 .

[12]  O. Gordon,et al.  Tunable broadband metamaterial absorber consisting of ferrite slabs and a copper wire , 2012 .

[13]  F. Kang,et al.  A second-order cross fractal meta-material structure used in low-frequency microwave absorbing materials , 2014 .

[14]  Qiang Cheng,et al.  A tunable metamaterial absorber using varactor diodes , 2013 .

[15]  Lei Zhou,et al.  Ultra-broadband terahertz metamaterial absorber , 2014 .

[16]  Jie Ji,et al.  Dual-band tunable perfect metamaterial absorber in the THz range. , 2016, Optics express.

[17]  K. V. Srivastava,et al.  An ultra thin metamaterial absorber using electric field driven LC resonator with meander lines , 2012, Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation.

[18]  D. Pozar Microwave Engineering , 1990 .

[19]  Hadis Morkoç,et al.  Microwave ferrites, part 1: fundamental properties , 2009 .

[20]  D. Zografopoulos,et al.  Tunable terahertz fishnet metamaterials based on thin nematic liquid crystal layers for fast switching , 2015, Scientific Reports.

[21]  V. M. Petrov,et al.  Microwave Absorbing Materials , 2001 .

[22]  Guangjun Wen,et al.  Experimental demonstration of a magnetically tunable ferrite based metamaterial absorber. , 2014, Optics express.

[23]  K. V. Srivastava,et al.  An ultra thin electric field driven LC resonator structure as metamaterial absorber for dual band applications , 2013, 2013 International Symposium on Electromagnetic Theory.

[24]  Wei Wang,et al.  Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption , 2015 .

[25]  Sailing He,et al.  Ultra-broadband microwave metamaterial absorber , 2011, 1201.0062.

[26]  Jianguo Guan,et al.  Integrating non-planar metamaterials with magnetic absorbing materials to yield ultra-broadband microwave hybrid absorbers , 2014 .

[27]  Bo O. Zhu,et al.  Polarization modulation by tunable electromagnetic metamaterial reflector/absorber. , 2010, Optics express.

[28]  Bing Wang,et al.  Ultrathin multi-band planar metamaterial absorber based on standing wave resonances. , 2012, Optics express.

[29]  O. Acher,et al.  Generalization of Snoek's law to ferromagnetic films and composites , 2007, 0710.2980.

[30]  Wei Li,et al.  Broadening the absorption bandwidth of metamaterial absorbers by transverse magnetic harmonics of 210 mode , 2016, Scientific Reports.

[31]  J. P. McGeehan,et al.  A high-efficiency RF transmitter using VCO-derived synthesis: CALLUM , 1998, Proceedings RAWCON 98. 1998 IEEE Radio and Wireless Conference (Cat. No.98EX194).

[32]  Jianguo Guan,et al.  Polymorphous Fe/FexOy composites: One-step oxidation preparation, composition control, and static magnetic and electromagnetic characteristics , 2011 .

[33]  Tao Wang,et al.  A broadband far-field microwave absorber with a sandwich structure , 2016 .

[34]  Douglas H. Werner,et al.  Reconfigurable and Tunable Metamaterials: A Review of the Theory and Applications , 2014 .

[35]  Somak Bhattacharyya,et al.  Bandwidth-enhanced dual-band dual-layer polarization-independent ultra-thin metamaterial absorber , 2015 .

[36]  Zheng Wang,et al.  Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption. , 2013, Physical review letters.

[37]  Chengkuo Lee,et al.  Micro-electro-mechanically switchable near infrared complementary metamaterial absorber , 2014 .

[38]  R. Gajić,et al.  Electrically Tunable Critically Coupled Terahertz Metamaterial Absorber Based on Nematic Liquid Crystals , 2015 .

[39]  Wenjing Su,et al.  Microfluidic tunable inkjet-printed metamaterial absorber on paper. , 2015, Optics express.

[40]  David Shrekenhamer,et al.  Liquid crystal tunable metamaterial absorber. , 2012, Physical review letters.

[41]  Somak Bhattacharyya,et al.  Triple band polarization-independent ultra-thin metamaterial absorber using electric field-driven LC resonator , 2014 .

[42]  Willie J Padilla,et al.  Metamaterial Electromagnetic Wave Absorbers , 2012, Advanced materials.

[43]  Lei Zhang,et al.  Fast tuning of Fano resonance in metal/phase-change materials/metal metamaterials , 2014 .

[44]  O. Acher,et al.  Bounds on the dynamic properties of magnetic materials , 2000 .

[45]  Wen Liu,et al.  Broadband polarizing beam splitter with an embedded metal-wire nanograting. , 2005, Optics letters.

[46]  Sungjoon Lim,et al.  Electromagnetic-based ethanol chemical sensor using metamaterial absorber , 2016 .

[47]  Max Born,et al.  Principles of optics - electromagnetic theory of propagation, interference and diffraction of light (7. ed.) , 1999 .

[48]  Andrea Massa,et al.  Reconfigurable Electromagnetics Through Metamaterials—A Review , 2015, Proceedings of the IEEE.