Reconfigurable implementation of elliptic curve crypto algorithms

For FPGA based coprocessors for elliptic curve cryptography, a significant performance gain can be achieved when hybrid coordinates are used to represent points on the elliptic curve. We provide a new area/performance tradeoff analysis of different hybrid representations over fields of characteristic two. Moreover, we present a new generic cryptoprocessor architecture that can be adapted to various area/performance constraints and finite field sizes, and show how to apply high level synthesis techniques to the controller design.

[1]  Olaf Bonorden,et al.  Factoring a binary polynomial of degree over one million , 2001, SIGS.

[2]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[3]  Sorin A. Huss,et al.  Ein FPGA basierter Elliptic-Curve Kryptoprozessor mit variabler Schlüssell"{a}nge für hohen Datendurchsatz , 2001 .

[4]  Exponentiation Using Addition Chains For Finite Fields , 2000 .

[5]  Joachim von zur Gathen,et al.  Computing special powers in finite fields: extended abstract , 1999, ISSAC '99.

[6]  Ricardo Dahab,et al.  Improved Algorithms for Elliptic Curve Arithmetic in GF(2n) , 1998, Selected Areas in Cryptography.

[7]  R. McEliece Finite Fields for Computer Scientists and Engineers , 1986 .

[8]  J. Olivos,et al.  Speeding up the computations on an elliptic curve using addition-subtraction chains , 1990, RAIRO Theor. Informatics Appl..

[9]  P. L. Montgomery Speeding the Pollard and elliptic curve methods of factorization , 1987 .

[10]  Huapeng Wu,et al.  On Computation of Polynomial Modular Reduction , 2000 .

[11]  Joachim von zur Gathen,et al.  Exponentiation in Finite Fields: Theory and Practice , 1997, AAECC.

[12]  Berk Sunar,et al.  Mastrovito Multiplier for All Trinomials , 1999, IEEE Trans. Computers.

[13]  A. Menezes,et al.  Applications of Finite Fields , 1992 .

[14]  Joachim von zur Gathen,et al.  Algorithms for Exponentiation in Finite Fields , 2000, J. Symb. Comput..

[15]  Ian F. Blake,et al.  Elliptic curves in cryptography , 1999 .

[16]  Ricardo Dahab,et al.  Fast Multiplication on Elliptic Curves over GF(2m) without Precomputation , 1999, CHES.

[17]  Rudolf Lide,et al.  Finite fields , 1983 .

[18]  Daniel M. Gordon,et al.  A Survey of Fast Exponentiation Methods , 1998, J. Algorithms.

[19]  Nigel P. Smart,et al.  The Hessian Form of an Elliptic Curve , 2001, CHES.

[20]  Christof Paar,et al.  A High Performance Reconfigurable Elliptic Curve Processor for GF(2m) , 2000, CHES.

[21]  Trieu-Kien Truong,et al.  VLSI Architectures for Computing Multiplications and Inverses in GF(2m) , 1983, IEEE Transactions on Computers.

[22]  Christof Paar,et al.  A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields , 1996, IEEE Trans. Computers.

[23]  Christof Paar,et al.  A super-serial Galois fields multiplier for FPGAs and its application to public-key algorithms , 1999, Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines (Cat. No.PR00375).

[24]  Gerald E. Sobelman,et al.  Elliptic Curve Scalar Multiplier Design Using FPGAs , 1999, CHES.

[25]  R. McEliece Finite field for scientists and engineers , 1987 .

[26]  Atsuko Miyaji,et al.  Efficient Elliptic Curve Exponentiation Using Mixed Coordinates , 1998, ASIACRYPT.

[27]  Y. Tsai,et al.  On addition chains , 1992 .