From Quantum Query Complexity to State Complexity

State complexity of quantum finite automata is one of the interesting topics in studying the power of quantum finite automata. It is therefore of importance to develop general methods how to show state succinctness results for quantum finite automata. One such method is presented and demonstrated in this paper. In particular, we show that state succinctness results can be derived out of query complexity results.

[1]  H. Buhrman,et al.  Complexity measures and decision tree complexity: a survey , 2002, Theor. Comput. Sci..

[2]  Sheng Yu State Complexity: Recent Results and Open Problems , 2005, Fundam. Informaticae.

[3]  Shenggen Zheng,et al.  State succinctness of two-way finite automata with quantum and classical states , 2012, Theor. Comput. Sci..

[4]  Alex Brodsky,et al.  Characterizations of 1-Way Quantum Finite Automata , 2002, SIAM J. Comput..

[5]  Avi Wigderson,et al.  Quantum vs. classical communication and computation , 1998, STOC '98.

[6]  John Watrous,et al.  On the power of quantum finite state automata , 1997, Proceedings 38th Annual Symposium on Foundations of Computer Science.

[7]  Shenggen Zheng,et al.  Potential of Quantum Finite Automata with Exact Acceptance , 2014, Int. J. Found. Comput. Sci..

[8]  Andris Ambainis,et al.  Superiority of exact quantum automata for promise problems , 2011, Inf. Process. Lett..

[9]  D. Deutsch,et al.  Rapid solution of problems by quantum computation , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[10]  Andris Ambainis,et al.  Two-way finite automata with quantum and classical state , 1999, Theor. Comput. Sci..

[11]  Paulo Mateus,et al.  Exponentially more concise quantum recognition of non-RMM regular languages , 2015, J. Comput. Syst. Sci..

[12]  Andris Ambainis,et al.  Exact query complexity of some special classes of Boolean functions , 2014, ArXiv.

[13]  Hartmut Klauck,et al.  On quantum and probabilistic communication: Las Vegas and one-way protocols , 2000, STOC '00.

[14]  James P. Crutchfield,et al.  Quantum automata and quantum grammars , 2000, Theor. Comput. Sci..

[15]  Ronald de Wolf,et al.  Quantum lower bounds by polynomials , 2001, JACM.

[16]  Shenggen Zheng,et al.  Some Languages Recognized by Two-Way Finite Automata with Quantum and Classical States , 2011, Int. J. Found. Comput. Sci..

[17]  A. C. Cem Say,et al.  Unbounded-error quantum computation with small space bounds , 2010, Inf. Comput..

[18]  Juraj Hromkovic,et al.  On the Power of Las Vegas for One-Way Communication Complexity, OBDDs, and Finite Automata , 2001, Inf. Comput..

[19]  Eyal Kushilevitz,et al.  Communication Complexity: Index of Notation , 1996 .

[20]  Eyal Kushilevitz,et al.  Communication Complexity , 1997, Adv. Comput..

[21]  Andris Ambainis,et al.  Superlinear advantage for exact quantum algorithms , 2012, STOC '13.

[22]  Andris Ambainis,et al.  1-way quantum finite automata: strengths, weaknesses and generalizations , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[23]  R. Cleve,et al.  Nonlocality and communication complexity , 2009, 0907.3584.

[24]  Andris Ambainis,et al.  Exact quantum algorithms have advantage for almost all Boolean functions , 2014, Quantum Inf. Comput..

[25]  François Le Gall,et al.  Exponential separation of quantum and classical online space complexity , 2006, SPAA '06.

[26]  Ashley Montanaro,et al.  On Exact Quantum Query Complexity , 2011, Algorithmica.

[27]  Jozef Gruska,et al.  Quantum Computing , 2008, Wiley Encyclopedia of Computer Science and Engineering.

[28]  Carlo Mereghetti,et al.  On the Size of One-way Quantum Finite Automata with Periodic Behaviors , 2002, RAIRO Theor. Informatics Appl..

[29]  Jozef Gruska,et al.  Multi-letter quantum finite automata: decidability of the equivalence and minimization of states , 2011, Acta Informatica.

[30]  Andris Ambainis,et al.  Quantum Finite Automata , 2011, NCMA.

[31]  Maris Ozols,et al.  Improved constructions of mixed state quantum automata , 2009, Theor. Comput. Sci..

[32]  Alberto Bertoni,et al.  Small size quantum automata recognizing some regular languages , 2005, Theor. Comput. Sci..

[33]  Jozef Gruska Foundations of Computing , 1997 .

[34]  Andris Ambainis,et al.  Improved constructions of quantum automata , 2008, Theor. Comput. Sci..

[35]  Alberto Bertoni,et al.  Some formal tools for analyzing quantum automata , 2006, Theor. Comput. Sci..

[36]  Andris Ambainis,et al.  Exact quantum query complexity of EXACT and THRESHOLD , 2013, TQC.

[37]  Andrew Chi-Chih Yao,et al.  Some complexity questions related to distributive computing(Preliminary Report) , 1979, STOC.

[38]  A. C. Cem Say,et al.  Succinctness of two-way probabilistic and quantum finite automata , 2009, Discret. Math. Theor. Comput. Sci..

[39]  Carlo Mereghetti,et al.  Note on the Succinctness of Deterministic, Nondeterministic, Probabilistic and Quantum Finite Automata , 2001, RAIRO Theor. Informatics Appl..

[40]  Shenggen Zheng,et al.  On the state complexity of semi-quantum finite automata , 2013, RAIRO Theor. Informatics Appl..

[41]  Shenggen Zheng,et al.  Power of the interactive proof systems with verifiers modeled by semi-quantum two-way finite automata , 2013, Inf. Comput..

[42]  Andris Ambainis,et al.  Dense quantum coding and quantum finite automata , 2002, JACM.

[43]  Gilles Brassard,et al.  An exact quantum polynomial-time algorithm for Simon's problem , 1997, Proceedings of the Fifth Israeli Symposium on Theory of Computing and Systems.

[44]  Jozef Gruska,et al.  Descriptional Complexity Issues in Quantum Computing , 2000, J. Autom. Lang. Comb..

[45]  Shenggen Zheng,et al.  One-Way Finite Automata with Quantum and Classical States , 2011, Languages Alive.