Strictly non-proportional geodesically equivalent metrics have htop(g) = 0

Dette er forfatternes aksepterte versjon. This is the author’s final accepted manuscript.

[1]  Y. Félix,et al.  Rational Homotopy Theory , 2000 .

[2]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[3]  A. V. Pavlov Estimates for the Betti Numbers of Rationally Elliptic Spaces , 2002 .

[4]  Bihamiltonian structures and Stäckel separability , 2000 .

[5]  K. Hess RATIONAL HOMOTOPY THEORY (Graduate Texts in Mathematics 205) By YVES FÉLIX, STEPHEN HALPERIN and JEAN-CLAUDE THOMAS: 535 pp., £41.00, ISBN 0-387-95068-0 (Springer, New York, 2001) , 2002 .

[6]  G. Paternain On the topology of manifolds with completely integrable geodesic flows , 1992, Ergodic Theory and Dynamical Systems.

[7]  A. Bolsinov,et al.  Geometrical interpretation of Benenti systems , 2003 .

[8]  Huyi Hu Some ergodic properties of commuting diffeomorphisms , 1993, Ergodic Theory and Dynamical Systems.

[9]  M. Gromov Entropy, homology and semialgebraic geometry , 1986 .

[10]  I. Taimanov,et al.  Integrable geodesic flows with positive topological entropy , 1999, math/9905078.

[11]  Collective geodesic flows , 2003 .

[12]  A. Katok,et al.  Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .

[13]  Y. Yomdin Volume growth and entropy , 1987 .

[14]  E. Beltrami,et al.  Risoluzione del problema: Riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette , 1865 .

[15]  L. Eliasson Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case , 1990 .

[16]  V. Matveev Three-dimensional manifolds having metrics with the same geodesics , 2003 .

[17]  A. Manning Topological entropy for geodesic flows , 1979 .

[18]  R. Bowen Entropy for group endomorphisms and homogeneous spaces , 1971 .

[19]  V. Matveev,et al.  Quantum integrability of Beltrami-Laplace operator as geodesic equivalence , 2001 .

[20]  ENTROPY AND COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS , 1991 .

[21]  J. Mikeš Geodesic mappings of affine-connected and Riemannian spaces , 1996 .

[22]  T. Levi-Civita Sulle trasformazioni delle equazioni dinamiche , 1896 .

[23]  Detlef Gromoll,et al.  On the Structure of Complete Manifolds of Nonnegative Curvature , 1972 .

[24]  Zero entropy and bounded topology , 2004, math/0406051.

[25]  On the topology of manifolds with completely integrable geodesic flows II , 1994 .

[26]  Detlef Gromoll,et al.  The structure of complete manifolds of nonnegative curvature , 1968 .

[27]  Examples of Integrable Sub-Riemannian Geodesic Flows , 2001, math/0105128.

[28]  An Outline of the Geometrical Theory of the Separation of Variables in the Hamilton-Jacobi and Schrödinger Equations , 2003 .

[29]  V. Matveev Hyperbolic manifolds are geodesically rigid , 2003 .

[30]  Hidekazu Ito Action-angle coordinates at singularities for analytic integrable systems , 1991 .

[31]  Minimal entropy and collapsing with curvature bounded from below , 2000, math/0011104.

[32]  L. Butler Toda lattices and positive-entropy integrable systems , 2004 .

[33]  Projective Lichnerowicz-Obata conjecture , 2004, math/0407337.