Strictly non-proportional geodesically equivalent metrics have htop(g) = 0
暂无分享,去创建一个
[1] Y. Félix,et al. Rational Homotopy Theory , 2000 .
[2] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[3] A. V. Pavlov. Estimates for the Betti Numbers of Rationally Elliptic Spaces , 2002 .
[4] Bihamiltonian structures and Stäckel separability , 2000 .
[5] K. Hess. RATIONAL HOMOTOPY THEORY (Graduate Texts in Mathematics 205) By YVES FÉLIX, STEPHEN HALPERIN and JEAN-CLAUDE THOMAS: 535 pp., £41.00, ISBN 0-387-95068-0 (Springer, New York, 2001) , 2002 .
[6] G. Paternain. On the topology of manifolds with completely integrable geodesic flows , 1992, Ergodic Theory and Dynamical Systems.
[7] A. Bolsinov,et al. Geometrical interpretation of Benenti systems , 2003 .
[8] Huyi Hu. Some ergodic properties of commuting diffeomorphisms , 1993, Ergodic Theory and Dynamical Systems.
[9] M. Gromov. Entropy, homology and semialgebraic geometry , 1986 .
[10] I. Taimanov,et al. Integrable geodesic flows with positive topological entropy , 1999, math/9905078.
[11] Collective geodesic flows , 2003 .
[12] A. Katok,et al. Introduction to the Modern Theory of Dynamical Systems: INTRODUCTION , 1995 .
[13] Y. Yomdin. Volume growth and entropy , 1987 .
[14] E. Beltrami,et al. Risoluzione del problema: Riportare i punti di una superficie sopra un piano in modo che le linee geodetiche vengano rappresentate da linee rette , 1865 .
[15] L. Eliasson. Normal forms for Hamiltonian systems with Poisson commuting integrals—elliptic case , 1990 .
[16] V. Matveev. Three-dimensional manifolds having metrics with the same geodesics , 2003 .
[17] A. Manning. Topological entropy for geodesic flows , 1979 .
[18] R. Bowen. Entropy for group endomorphisms and homogeneous spaces , 1971 .
[19] V. Matveev,et al. Quantum integrability of Beltrami-Laplace operator as geodesic equivalence , 2001 .
[20] ENTROPY AND COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS , 1991 .
[21] J. Mikeš. Geodesic mappings of affine-connected and Riemannian spaces , 1996 .
[22] T. Levi-Civita. Sulle trasformazioni delle equazioni dinamiche , 1896 .
[23] Detlef Gromoll,et al. On the Structure of Complete Manifolds of Nonnegative Curvature , 1972 .
[24] Zero entropy and bounded topology , 2004, math/0406051.
[25] On the topology of manifolds with completely integrable geodesic flows II , 1994 .
[26] Detlef Gromoll,et al. The structure of complete manifolds of nonnegative curvature , 1968 .
[27] Examples of Integrable Sub-Riemannian Geodesic Flows , 2001, math/0105128.
[28] An Outline of the Geometrical Theory of the Separation of Variables in the Hamilton-Jacobi and Schrödinger Equations , 2003 .
[29] V. Matveev. Hyperbolic manifolds are geodesically rigid , 2003 .
[30] Hidekazu Ito. Action-angle coordinates at singularities for analytic integrable systems , 1991 .
[31] Minimal entropy and collapsing with curvature bounded from below , 2000, math/0011104.
[32] L. Butler. Toda lattices and positive-entropy integrable systems , 2004 .
[33] Projective Lichnerowicz-Obata conjecture , 2004, math/0407337.