Resonance Raman spectroscopy of Compound II and its decay in Mycobacterium tuberculosis catalase-peroxidase KatG and its isoniazid resistant mutant S315T.

[1]  R. Magliozzo,et al.  Mycobacterium tuberculosis KatG(S315T) catalase-peroxidase retains all active site properties for proper catalytic function. , 2005, Biochemistry.

[2]  Rahul Singh,et al.  Structural characterization of the Ser324Thr variant of the catalase-peroxidase (KatG) from Burkholderia pseudomallei. , 2005, Journal of molecular biology.

[3]  Jesmin,et al.  Crystal Structure of Mycobacterium tuberculosis Catalase-Peroxidase* , 2004, Journal of Biological Chemistry.

[4]  K. Brown,et al.  Enzyme-catalyzed Mechanism of Isoniazid Activation in Class I and Class III Peroxidases* , 2004, Journal of Biological Chemistry.

[5]  P. Ortiz de Montellano,et al.  Superoxide reactivity of KatG: insights into isoniazid resistance pathways in TB. , 2004, Journal of the American Chemical Society.

[6]  B. Meunier,et al.  Biomimetic Chemical Catalysts in the Oxidative Activation of Drugs , 2004 .

[7]  Stefania Girotto,et al.  Reduced Affinity for Isoniazid in the S315T Mutant ofMycobacterium tuberculosis KatG Is a Key Factor in Antibiotic Resistance* , 2003, The Journal of Biological Chemistry.

[8]  S. Girotto,et al.  Conformational differences in Mycobacterium tuberculosis catalase-peroxidase KatG and its S315T mutant revealed by resonance Raman spectroscopy. , 2003, Biochemistry.

[9]  P. Loewen,et al.  Catalase-peroxidase KatG of Burkholderia pseudomallei at 1.7A resolution. , 2003, Journal of molecular biology.

[10]  S. Girotto,et al.  Identification and Characterization of Tyrosyl Radical Formation in Mycobacterium tuberculosisCatalase-Peroxidase (KatG)* , 2002, The Journal of Biological Chemistry.

[11]  N. Wengenack,et al.  Evidence for isoniazid-dependent free radical generation catalyzed by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG(S315T). , 2001, Biochemistry.

[12]  K. Brown,et al.  Oxidation of isoniazid by manganese and Mycobacterium tuberculosis catalase-peroxidase yields a new mechanism of activation. , 2001, Journal of the American Chemical Society.

[13]  N. Wengenack,et al.  Redox potential measurements of the Mycobacterium tuberculosis heme protein KatG and the isoniazid-resistant enzyme KatG(S315T): insights into isoniazid activation. , 2000, Biochemistry.

[14]  I. Lippai,et al.  Catalase-peroxidase (Mycobacterium tuberculosis KatG) catalysis and isoniazid activation. , 2000, Biochemistry.

[15]  J. Dawson,et al.  Haem iron-containing peroxidases. , 1999, Essays in biochemistry.

[16]  N. Wengenack,et al.  Isoniazid Oxidation by Mycobacterium tuberculosis KatG: A Role for Superoxide Which Correlates with Isoniazid Susceptibility , 1999 .

[17]  N. Wengenack,et al.  Evidence for differential binding of isoniazid by Mycobacterium tuberculosis KatG and the isoniazid-resistant mutant KatG(S315T). , 1998, Biochemistry.

[18]  J. Marcinkeviciene,et al.  The Role of Mn(II)-Peroxidase Activity of Mycobacterial Catalase-Peroxidase in Activation of the Antibiotic Isoniazid* , 1997, The Journal of Biological Chemistry.

[19]  M. M. Fitzgerald,et al.  Solution and Crystal Structures of the H175G Mutant of Cytochrome c Peroxidase: A Resonance Raman Study , 1997 .

[20]  P. Schultz,et al.  Overexpression, Purification, and Characterization of the Catalase-peroxidase KatG from Mycobacterium tuberculosis* , 1997, The Journal of Biological Chemistry.

[21]  K. Czarnecki,et al.  Resonance Raman Spectra of Native and Mesoheme-reconstituted Horseradish Peroxidase and Their Catalytic Intermediates* , 1996, The Journal of Biological Chemistry.

[22]  J. Marcinkeviciene,et al.  Evidence for Isoniazid Oxidation by Oxyferrous Mycobacterial Catalase−Peroxidase , 1996 .

[23]  P. Schultz,et al.  Mechanistic Studies of the Oxidation of Isoniazid by the Catalase Peroxidase from Mycobacterium tuberculosis , 1994 .

[24]  H. V. Van Wart,et al.  Resonance Raman spectra of horseradish peroxidase and bovine liver catalase compound I species. Evidence for predominant 2A2u pi-cation radical ground state configurations. , 1992, The Journal of biological chemistry.

[25]  Catherine M. Reczek,et al.  Resonance Raman characterization of heme Fe(IV)=O groups of intermediates of yeast cytochrome C peroxidase and lactoperoxidase , 1989 .

[26]  V. Palaniappan,et al.  Resonance Raman spectroscopy of horseradish peroxidase derivatives and intermediates with excitation in the near ultraviolet. , 1989, The Journal of biological chemistry.

[27]  H. V. Van Wart,et al.  Resonance Raman spectra of bovine liver catalase compound II. Similarity of the heme environment to horseradish peroxidase compound II. , 1989, The Journal of biological chemistry.

[28]  K. Paeng,et al.  The resonance Raman spectrum of horseradish peroxidase compound I , 1988 .

[29]  J. Terner,et al.  Resonance Raman spectroscopic evidence for heme iron-hydroxide ligation in peroxidase alkaline forms. , 1988, The Journal of biological chemistry.

[30]  Thomas G. Spiro,et al.  Biological applications of Raman spectroscopy , 1987 .

[31]  T. Inubushi,et al.  Resonance Raman study on cytochrome c peroxidase and its intermediate. Presence of the Fe(IV) = O bond in compound ES and heme-linked ionization. , 1986, The Journal of biological chemistry.

[32]  H. Dunford,et al.  ON THE MECHANISMS OF PHOTOLYSIS OF COMPOUNDS I AND II OF HORSERADISH PEROXIDASE AT 77 K* , 1979 .

[33]  M. Stillman,et al.  Photochemical reactions of horseradish peroxidase compounds I and II at room temperature and 13 degrees K. , 1975, Biochemistry.

[34]  M. Stillman,et al.  Horseradish peroxidase. XIX. A photochemical reaction of compound I at 5°K , 1975 .