Adaptive parameter control of evolutionary algorithms to improve quality-time trade-off

Parameter control of evolutionary algorithms (EAs) poses special challenges as EA uses a population and requires many parameters to be controlled for an effective search. Quality improvement is dependent on several factors, such as, fitness estimation, population diversity and convergence rate. A widely practiced approach to identify a good set of parameters for a particular class of problem is through experimentation. Ideally, the parameter selection should depend on the resource availability, and thus, a rigid choice may not be suitable. In this work, we propose an automated framework for parameter selection, which can adapt according to the constraints specified. To condition the parameter choice through resource constraint/utilization, we consider two typical scenarios, one where maximum available run-time is pre-specified and the other in which a utility function modeling the quality-time trade-off is used instead of a rigid deadline. We present static and dynamic parameter selection strategies based on a probabilistic profiling method. Experiments performed with traveling salesman problem (TSP) and standard cell placement problem show that an informed adaptive parameter control mechanism can yield better results than a static selection.

[1]  Elena Marchiori,et al.  Evolutionary Algorithms with On-the-Fly Population Size Adjustment , 2004, PPSN.

[2]  John J. Grefenstette,et al.  Optimization of Control Parameters for Genetic Algorithms , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[3]  J. David Schaffer,et al.  Proceedings of the third international conference on Genetic algorithms , 1989 .

[4]  P. P. Chakrabarti,et al.  Improving the performance of CAD optimization algorithms using on-line meta-level control , 2006, 19th International Conference on VLSI Design held jointly with 5th International Conference on Embedded Systems Design (VLSID'06).

[5]  Bryant A. Julstrom,et al.  Adaptive operator probabilities in a genetic algorithm that applies three operators , 1997, SAC '97.

[6]  F. Brglez,et al.  A neutral netlist of 10 combinational benchmark circuits and a target translator in FORTRAN , 1985 .

[7]  Jim Smith,et al.  Self adaptation of mutation rates in a steady state genetic algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[8]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[9]  Hideyuki Takagi,et al.  Dynamic Control of Genetic Algorithms Using Fuzzy Logic Techniques , 1993, ICGA.

[10]  Francisco Herrera,et al.  Genetic Algorithms and Soft Computing , 1996 .

[11]  Eric Horvitz,et al.  Time-Dependent Utility and Action Under Uncertainty , 1991, UAI.

[12]  L. Darrell Whitley,et al.  The GENITOR Algorithm and Selection Pressure: Why Rank-Based Allocation of Reproductive Trials is Best , 1989, ICGA.

[13]  P. P. Chakrabarti,et al.  An Adaptive Framework for Solving Multiple Hard Problems Under Time Constraints , 2005, CIS.

[14]  Katia Sycara,et al.  Reasons for premature convergence of self-adapting mutation rates , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[15]  Bart Selman,et al.  Algorithm portfolios , 2001, Artif. Intell..

[16]  Mark S. Boddy,et al.  Deliberation Scheduling for Problem Solving in Time-Constrained Environments , 1994, Artif. Intell..

[17]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[18]  Carl Sechen,et al.  Timing Driven Placement for Large Standard Cell Circuits , 1995, 32nd Design Automation Conference.

[19]  Zbigniew Michalewicz,et al.  Parameter Control in Evolutionary Algorithms , 2007, Parameter Setting in Evolutionary Algorithms.

[20]  Victor R. Lesser,et al.  Design-to-time real-time scheduling , 1993, IEEE Trans. Syst. Man Cybern..

[21]  Dimitri P. Bertsekas,et al.  Dynamic Programming: Deterministic and Stochastic Models , 1987 .

[22]  Shlomo Zilberstein,et al.  Composing Real-Time Systems , 1991, IJCAI.

[23]  P. P. Chakrabarti,et al.  An Automated Meta-Level Control Framework for Optimizing the Quality–Time Tradeoff of VLSI Algorithms , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[24]  Kenny Q. Zhu,et al.  Population Diversity in Permutation-Based Genetic Algorithm , 2004, ECML.

[25]  Lawrence Davis,et al.  Adapting Operator Probabilities in Genetic Algorithms , 1989, ICGA.

[26]  Stephen F. Smith,et al.  Modeling GA Performance for Control Parameter Optimization , 2000, GECCO.

[27]  Pinaki Mazumder,et al.  A genetic approach to standard cell placement using meta-genetic parameter optimization , 1990, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[28]  Rajeev Kumar,et al.  Adaptive Parameter Control of Evolutionary Algorithms Under Time Constraints , 2006 .

[29]  Majid Sarrafzadeh,et al.  Dragon2000: standard-cell placement tool for large industry circuits , 2000, IEEE/ACM International Conference on Computer Aided Design. ICCAD - 2000. IEEE/ACM Digest of Technical Papers (Cat. No.00CH37140).

[30]  Alex Fukunaga,et al.  Genetic algorithm portfolios , 2000, Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512).

[31]  Shengxiang Yang Adaptive crossover in genetic algorithms using statistics mechanism , 2002 .

[32]  Shlomo Zilberstein,et al.  Monitoring and control of anytime algorithms: A dynamic programming approach , 2001, Artif. Intell..

[33]  Eric Horvitz,et al.  Reasoning about beliefs and actions under computational resource constraints , 1987, Int. J. Approx. Reason..

[34]  Eric Joel Hovitz Computation and action under bounded resources , 1991 .

[35]  Victor R. Lesser,et al.  Design-to-time scheduling and anytime algorithms , 1996, SGAR.

[36]  Andrzej Jaszkiewicz,et al.  Genetic local search for multi-objective combinatorial optimization , 2022 .

[37]  Shlomo Zilberstein,et al.  Operational Rationality through Compilation of Anytime Algorithms , 1995, AI Mag..

[38]  Tuomas Sandholm,et al.  Using Performance Profile Trees to Improve Deliberation Control , 2004, AAAI.

[39]  Shaul Markovitch,et al.  Optimal schedules for monitoring anytime algorithms , 2001, Artif. Intell..

[40]  P. P. Chakrabarti,et al.  Adaptive Control of Anytime Algorithm Parameters , 2005, IICAI.