Probing the circumgalactic medium at high-redshift using composite boss spectra of strong Lyman α forest absorbers

Author(s): Pieri, M; Mortonson, MJ; Frank, S; Crighton, N; Weinberg, DH; Lee, KG; Noterdaeme, P; Bailey, S; Busca, N; Ge, J; Kirkby, D; Lundgren, B; Mathur, S; Pâris, I; Palanque-Delabrouille, N; Petitjean, P; Rich, J; Ross, NP; Schneider, DP; York, DG | Abstract: present composite spectra constructed from a sample of 242 150 Lyman a (Lyα) forest absorbers at redshifts 2.4 l z l 3.1 identified in quasar spectra from the Baryon Oscillation Spectroscopic Survey (BOSS) as part of Data Release 9 of the Sloan Digital Sky Survey III. We select forest absorbers by their flux in bins 138 km s-1 wide (approximately the size of the BOSS resolution element). We split these absorbers into five samples spanning the range of flux -0.05 ≤ F l 0.45. Tests on a smaller set of high-resolution spectra show that our three strongest absorption samples would probe circumgalactic regions (projected separation l300 proper kpc and |δ v| l 300 km s-1) in about 60 per cent of cases for very high signal-to-noise ratio. Within this subset, weakening Lyα absorption is associated with decreasing purity of circumgalactic selection once BOSS noise is included. Our weaker two Lyα absorption samples are dominated by the intergalactic medium. We present composite spectra of these samples and a catalogue of measured absorption features from H I and 13 metal ionization species, all of which we make available to the community. We compare measurements of seven Lyman series transitions in our composite spectra to single line models and obtain further constraints from their associated excess Lyman limit opacity. This analysis provides results consistent with column densities over the range 14.4 ≤ log(NHI) ≤ 16.45. We compare our measurements of metal absorption to a variety of simple single-line, singlephase models for a preliminary interpretation. Our results imply clumping on scales down to 30 pc and near-solar metallicities in the circumgalactic samples, while high-ionization metal absorption consistent with typical IGM densities and metallicities is visible in all samples. © 2014 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

[1]  J. Schaye,et al.  Predictions for the relation between strong Hi absorbers and galaxies at redshift 3 , 2013, 1310.3317.

[2]  J. Prochaska,et al.  DISSECTING THE PROPERTIES OF OPTICALLY THICK HYDROGEN AT THE PEAK OF COSMIC STAR FORMATION HISTORY , 2013, 1308.1101.

[3]  J. Prochaska,et al.  METAL-POOR, COOL GAS IN THE CIRCUMGALACTIC MEDIUM OF A z = 2.4 STAR-FORMING GALAXY: DIRECT EVIDENCE FOR COLD ACCRETION? , 2013, 1307.6588.

[4]  A. Myers,et al.  The one-dimensional Lyα forest power spectrum from BOSS , 2013, 1306.5896.

[5]  J. Schaye,et al.  Non-equilibirum ionization and cooling of metal-enriched gas in the presence of a photoionization background , 2013, 1302.5710.

[6]  J. Prochaska,et al.  THE BIMODAL METALLICITY DISTRIBUTION OF THE COOL CIRCUMGALACTIC MEDIUM AT z ≲ 1 , 2013, 1302.5424.

[7]  B. Savage,et al.  Characterizing the Circumgalactic Medium of Nearby Galaxies with HST/COS and HST/STIS Absorption-line Spectroscopy. II. Methods and Models , 2012, 1212.5658.

[8]  G. Bryan,et al.  Constraints on hydrodynamical subgrid models from quasar absorption line studies of the simulated circumgalactic medium , 2012, 1212.2965.

[9]  S. Borgani,et al.  Galactic winds in cosmological simulations of the circumgalactic medium , 2012, 1210.3582.

[10]  L. Infante,et al.  The VLT LBG Redshift Survey - III. The clustering and dynamics of Lyman-break galaxies at z ~ 3 , 2012, 1204.3635.

[11]  J. Xavier Prochaska,et al.  THE HST/ACS+WFC3 SURVEY FOR LYMAN LIMIT SYSTEMS. II. SCIENCE , 2012, 1204.3093.

[12]  J. Prochaska,et al.  QSO ABSORPTION SYSTEMS DETECTED IN Ne viii: HIGH-METALLICITY CLOUDS WITH A LARGE EFFECTIVE CROSS SECTION , 2012, 1201.0939.

[13]  W. M. Wood-Vasey,et al.  The Sloan Digital Sky Survey quasar catalog: ninth data release , 2012, 1210.5166.

[14]  E. Malanushenko,et al.  Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9 , 2012, 1210.1213.

[15]  Walter A. Siegmund,et al.  THE MULTI-OBJECT, FIBER-FED SPECTROGRAPHS FOR THE SLOAN DIGITAL SKY SURVEY AND THE BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1208.2233.

[16]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[17]  M. A. Strauss,et al.  SPECTRAL CLASSIFICATION AND REDSHIFT MEASUREMENT FOR THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7326.

[18]  H. Rix,et al.  LARGE-SCALE STAR-FORMATION-DRIVEN OUTFLOWS AT 1 < z < 2 IN THE 3D-HST SURVEY , 2012, 1207.7077.

[19]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[20]  J. Prochaska,et al.  THE CIRCUMGALACTIC MEDIUM OF MASSIVE GALAXIES AT z ∼ 3: A TEST FOR STELLAR FEEDBACK, GALACTIC OUTFLOWS, AND COLD STREAMS , 2012, 1205.0270.

[21]  C. Steidel,et al.  THE GASEOUS ENVIRONMENT OF HIGH-z GALAXIES: PRECISION MEASUREMENTS OF NEUTRAL HYDROGEN IN THE CIRCUMGALACTIC MEDIUM OF z ∼ 2–3 GALAXIES IN THE KECK BARYONIC STRUCTURE SURVEY , 2012, 1202.6055.

[22]  David N. Spergel,et al.  MEAN-FLUX-REGULATED PRINCIPAL COMPONENT ANALYSIS CONTINUUM FITTING OF SLOAN DIGITAL SKY SURVEY Lyα FOREST SPECTRA , 2012 .

[23]  Adam D. Myers,et al.  THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY: QUASAR TARGET SELECTION FOR DATA RELEASE NINE , 2011, 1105.0606.

[24]  J. X. Prochaska,et al.  The Large, Oxygen-Rich Halos of Star-Forming Galaxies Are a Major Reservoir of Galactic Metals , 2011, Science.

[25]  J. Prochaska,et al.  The Hidden Mass and Large Spatial Extent of a Post-Starburst Galaxy Outflow , 2011, Science.

[26]  C. Steidel,et al.  NEUTRAL HYDROGEN OPTICAL DEPTH NEAR STAR-FORMING GALAXIES AT z ≈ 2.4 IN THE KECK BARYONIC STRUCTURE SURVEY , 2011, 1109.4944.

[27]  C. Steidel,et al.  The most metal-poor damped Lyα systems: insights into chemical evolution in the very metal-poor regime★ , 2011, 1106.2805.

[28]  K. Nomoto,et al.  CHEMICAL ENRICHMENT IN THE CARBON-ENHANCED DAMPED Lyα SYSTEM BY POPULATION III SUPERNOVAE , 2011, 1101.1227.

[29]  J. Prochaska,et al.  Absorption-line systems in simulated galaxies fed by cold streams , 2011, 1103.2130.

[30]  A. Myers,et al.  THINK OUTSIDE THE COLOR BOX: PROBABILISTIC TARGET SELECTION AND THE SDSS-XDQSO QUASAR TARGETING CATALOG , 2010, 1011.6392.

[31]  D. Keres̆,et al.  The small covering factor of cold accretion streams , 2010, 1011.1693.

[32]  J. Prochaska,et al.  KECK ECHELLETTE SPECTROGRAPH AND IMAGER OBSERVATIONS OF METAL-POOR DAMPED Lyα SYSTEMS , 2010 .

[33]  P. Petitjean,et al.  The VLT LBG Redshift Survey* – II. Interactions between galaxies and the IGM at z∼ 3 , 2010, 1006.4385.

[34]  P. Petitjean,et al.  The VLT LBG Redshift Survey – I. Clustering and dynamics of ≈1000 galaxies at z≈ 3 , 2010, 1005.3028.

[35]  C. Steidel,et al.  THE STRUCTURE AND KINEMATICS OF THE CIRCUMGALACTIC MEDIUM FROM FAR-ULTRAVIOLET SPECTRA OF z ≃ 2–3 GALAXIES , 2010, 1003.0679.

[36]  M. Pieri,et al.  ANISOTROPIC GALACTIC OUTFLOWS AND ENRICHMENT OF THE INTERGALACTIC MEDIUM. II. NUMERICAL SIMULATIONS , 2010, 1002.4881.

[37]  D. York,et al.  THE COMPOSITE SPECTRUM OF STRONG Lyα FOREST ABSORBERS , 2010, 1001.5282.

[38]  J. Prochaska,et al.  A DEFINITIVE SURVEY FOR LYMAN LIMIT SYSTEMS AT z ∼ 3.5 WITH THE SLOAN DIGITAL SKY SURVEY , 2009, 0912.0292.

[39]  J. Schaye,et al.  The physics driving the cosmic star formation history , 2009, 0909.5196.

[40]  D. York,et al.  A SEARCH FOR OXYGEN IN THE LOW-DENSITY Lyα FOREST USING THE SLOAN DIGITAL SKY SURVEY , 2009, 0908.2001.

[41]  Edward J. Wollack,et al.  Five-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Data Processing, Sky Maps, & Basic Results , 2008, 0803.0732.

[42]  C. Steidel,et al.  C, N, O abundances in the most metal-poor damped Lyman alpha systems★ , 2007, 0712.1829.

[43]  B. Oppenheimer,et al.  Mass, metal, and energy feedback in cosmological simulations , 2007, 0712.1827.

[44]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[45]  J. Prochaska,et al.  A Direct Precision Measurement of the Intergalactic Lyα Opacity at 2 ≤ z ≤ 4.2 , 2007, 0710.4522.

[46]  M. Raddick,et al.  The Fifth Data Release of the Sloan Digital Sky Survey , 2007, 0707.3380.

[47]  M. Pieri,et al.  Feedback and Its Feedback Effect on Feedback: Photoionization Suppression and Its Impact on Galactic Outflows , 2007 .

[48]  R. Lynch,et al.  Physical Properties of Weak Mg II Absorbers at z ~ 2 , 2007, 0705.2036.

[49]  R. Carswell,et al.  A large population of metal-rich, compact, intergalactic C iv absorbers – evidence for poor small-scale metal mixing , 2007, astro-ph/0701761.

[50]  D. York,et al.  Broad Absorption Line Variability in Repeat Quasar Observations from the Sloan Digital Sky Survey , 2006, 1307.7832.

[51]  M. Pieri,et al.  Anisotropic Galactic Outflows and Enrichment of the Intergalactic Medium. I. Monte Carlo Simulations , 2006, astro-ph/0606423.

[52]  K. Stanek,et al.  Disparate MG II absorption statistics towards quasars and gamma-ray bursts: a possible explanation , 2006, astro-ph/0605676.

[53]  T. Matheson,et al.  Strongly Variable z = 1.48 Fe II and Mg II Absorption in the Spectra of z = 4.05 GRB 060206 , 2006, astro-ph/0612409.

[54]  B. Oppenheimer,et al.  Cosmological simulations of intergalactic medium enrichment from galactic outflows , 2006, astro-ph/0605651.

[55]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[56]  B. Frye,et al.  High-metallicity, photoionized gas in intergalactic large-scale filaments , 2005, astro-ph/0512163.

[57]  M. Pieri,et al.  The Spatial Distribution of Metals in the Intergalactic Medium , 2005, astro-ph/0507081.

[58]  W. Sargent,et al.  Observations of Chemically Enriched QSO Absorbers near z~2.3 Galaxies: Galaxy Formation Feedback Signatures in the Intergalactic Medium , 2005, astro-ph/0508116.

[59]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[60]  C. Martin Mapping Large-Scale Gaseous Outflows in Ultraluminous Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic Mass , 2004, astro-ph/0410247.

[61]  J. Brinkmann,et al.  The Lyα Forest Power Spectrum from the Sloan Digital Sky Survey , 2004, astro-ph/0405013.

[62]  Max Pettini,et al.  Optical Selection of Star-forming Galaxies at Redshifts 1 < z < 3 , 2004, astro-ph/0401445.

[63]  W. Sargent,et al.  The Distribution of Metallicity in the Intergalactic Medium at z ~ 2.5: O VI and C IV Absorption in the Spectra of Seven QSOs , 2003, astro-ph/0312467.

[64]  W. Sargent,et al.  Metallicity of the Intergalactic Medium Using Pixel Statistics. III. Silicon , 2003, astro-ph/0310664.

[65]  M. Pieri,et al.  Pixel correlation searches for O vi in the Lyman α forest and the volume filling factor of metals in the intergalactic medium at z ∼ 2-3.5 , 2003, astro-ph/0308003.

[66]  W. Sargent,et al.  ACCEPTED FOR PUBLICATION IN THE ASTROPHYSICAL JOURNAL Preprint typeset using LATEX style emulateapj v. 4/9/03 METALLICITY OF THE INTERGALACTIC MEDIUM USING PIXEL STATISTICS. II. THE DISTRIBUTION OF METALS AS TRACED BY CIV 1 , 2003 .

[67]  C. Steidel,et al.  Galaxies and Intergalactic Matter at Redshift z ~ 3: Overview , 2002, astro-ph/0210314.

[68]  R. Carswell,et al.  The physical properties of the Lyα forest at z > 1.5 , 2002, astro-ph/0205237.

[69]  G. Williger,et al.  The Heavy-Element Enrichment of Lyα Clouds in the Virgo Supercluster , 2002, astro-ph/0204204.

[70]  P. Madau,et al.  Early Enrichment of the Intergalactic Medium and Its Feedback on Galaxy Formation , 2002, astro-ph/0201463.

[71]  S. Mathur,et al.  Chandra Discovery of a Tree in the X-Ray Forest toward PKS 2155–304: The Local Filament? , 2002, astro-ph/0201058.

[72]  J. Rigby,et al.  The Population of Weak Mg II Absorbers. II. The Properties of Single-Cloud Systems , 2001, astro-ph/0110191.

[73]  D. Weinberg,et al.  Metal Enrichment of the Intergalactic Medium at z = 3 by Galactic Winds , 2000, astro-ph/0006345.

[74]  W. Sargent,et al.  The Detection of Oxygen in the Low-Density Intergalactic Medium , 2000, astro-ph/0008011.

[75]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[76]  A. Ferrara,et al.  Starburst-driven Mass Loss from Dwarf Galaxies: Efficiency and Metal Ejection , 1998, astro-ph/9801237.

[77]  G. Ferland,et al.  CLOUDY 90: Numerical Simulation of Plasmas and Their Spectra , 1998 .

[78]  L. Cowie,et al.  The Distribution of column densities and b values in the Lyman-alpha forest , 1995, astro-ph/9507047.

[79]  L. Cowie,et al.  The metallicity and internal structure of the Lyman-alpha forest clouds , 1995 .

[80]  N. Grevesse,et al.  Abundances of the elements: Meteoritic and solar , 1989 .

[81]  D. York,et al.  Observations of weak C IV absorption toward the QSOs 2000-330 and 2126-158 , 1987 .

[82]  R. Lynds The Absorption-Line Spectrum of 4c 05.34 , 1971 .

[83]  Bruce A. Peterson,et al.  On the Density of Neutral Hydrogen in Intergalactic Space , 1965 .