Efficient Portfolio Construction with the Use of Multiobjective Evolutionary Algorithms: Best Practices and Performance Metrics

This paper provides a systematic study of the technologies and algorithms associated with the implementation of multiobjective evolutionary algorithms (MOEAs) for the solution of the portfolio optimization problem. Based on the examination of the state-of-the art we provide the best practices for dealing with the complexities of the constrained portfolio optimization problem (CPOP). In particular, rigorous algorithmic and technical treatment is provided for the efficient incorporation of a wide range of real-world constraints into the MOEAs. Moreover, we address special configuration issues related to the application of MOEAs for solving the CPOP. Finally, by examining the state-of-the-art we identify the most appropriate performance metrics for the evaluation of the relevant results from the implementation of the MOEAs to the solution of the CPOP.

[1]  Jih-Jeng Huang,et al.  A novel hybrid model for portfolio selection , 2005, Appl. Math. Comput..

[2]  Fei Wang,et al.  Combining technical trading rules using particle swarm optimization , 2014, Expert Syst. Appl..

[3]  Kamal Smimou,et al.  International portfolio choice and political instability risk: A multi-objective approach , 2014, Eur. J. Oper. Res..

[4]  Konstantinos P. Anagnostopoulos,et al.  A portfolio optimization model with three objectives and discrete variables , 2010, Comput. Oper. Res..

[5]  Masahiro Inuiguchi,et al.  Multiobjective credibilistic portfolio selection model with fuzzy chance-constraints , 2013, Inf. Sci..

[6]  Yazid M. Sharaiha,et al.  Heuristics for cardinality constrained portfolio optimisation , 2000, Comput. Oper. Res..

[7]  Bogdan Rebiasz,et al.  Selection of efficient portfolios-probabilistic and fuzzy approach, comparative study , 2013, Comput. Ind. Eng..

[8]  Manoj Kumar Tiwari,et al.  Algorithm portfolios for logistics optimization considering stochastic demands and mobility allowance , 2013 .

[9]  R. Balasubramanian,et al.  Optimization of India’s electricity generation portfolio using intelligent Pareto-search genetic algorithm , 2014 .

[10]  Peng Zhang,et al.  Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints , 2014, Fuzzy Sets Syst..

[11]  Gang Kou,et al.  A cosine maximization method for the priority vector derivation in AHP , 2014, Eur. J. Oper. Res..

[12]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[13]  Kostas Andriosopoulos,et al.  Performance replication of the Spot Energy Index with optimal equity portfolio selection: Evidence from the UK, US and Brazilian markets , 2014, Eur. J. Oper. Res..

[14]  Tak-Chung Fu,et al.  Adopting genetic algorithms for technical analysis and portfolio management , 2013, Comput. Math. Appl..

[15]  Gang Kou,et al.  Enhancing data consistency in decision matrix: Adapting Hadamard model to mitigate judgment contradiction , 2014, Eur. J. Oper. Res..

[16]  Sang-Chin Yang,et al.  Portfolio optimization problems in different risk measures using genetic algorithm , 2009, Expert Syst. Appl..

[17]  Graham Kendall,et al.  A learning-guided multi-objective evolutionary algorithm for constrained portfolio optimization , 2014, Appl. Soft Comput..

[18]  Madjid Tavana,et al.  A hybrid fuzzy rule-based multi-criteria framework for sustainable project portfolio selection , 2013, Inf. Sci..

[19]  Abdullah Al Mamun,et al.  Investigating technical trading strategy via an multi-objective evolutionary platform , 2009, Expert Syst. Appl..

[20]  Andrea Schaerf,et al.  Local Search Techniques for Constrained Portfolio Selection Problems , 2001, ArXiv.

[21]  J. Beasley,et al.  Portfolio rebalancing with an investment horizon and transaction costs , 2013 .

[22]  Konstantinos Liagkouras,et al.  Multiobjective Evolutionary Algorithms for Portfolio Management: A comprehensive literature review , 2012, Expert Syst. Appl..

[23]  Kalyanmoy Deb,et al.  Portfolio optimization with an envelope-based multi-objective evolutionary algorithm , 2009, Eur. J. Oper. Res..

[24]  Kathrin Klamroth,et al.  An MCDM approach to portfolio optimization , 2004, Eur. J. Oper. Res..

[25]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[26]  Kittipong Boonlong,et al.  Multi-objective genetic algorithms for solving portfolio optimization problems in the electricity market , 2014 .

[27]  K. Metaxiotis,et al.  The Constrained Mean-Semivariance Portfolio Optimization Problem with the Support of a Novel Multiobjective Evolutionary Algorithm , 2013 .

[28]  Detlef Seese,et al.  A hybrid heuristic approach to discrete multi-objective optimization of credit portfolios , 2004, Comput. Stat. Data Anal..

[29]  Ganapati Panda,et al.  A comparative performance assessment of a set of multiobjective algorithms for constrained portfolio assets selection , 2014, Swarm Evol. Comput..

[30]  Konstantinos Liagkouras,et al.  A new Probe Guided Mutation operator and its application for solving the cardinality constrained portfolio optimization problem , 2014, Expert Syst. Appl..

[31]  David E. Goldberg,et al.  The Gambler's Ruin Problem, Genetic Algorithms, and the Sizing of Populations , 1999, Evolutionary Computation.

[32]  Bernd Scherer,et al.  Introduction to modern portfolio optimization with NUOPT and S-PLUS , 2005 .

[33]  Eduardo Fernández,et al.  Application of the non-outranked sorting genetic algorithm to public project portfolio selection , 2013, Inf. Sci..

[34]  Yi Peng,et al.  Evaluation of Classification Algorithms Using MCDM and Rank Correlation , 2012, Int. J. Inf. Technol. Decis. Mak..

[35]  K. Deb An Efficient Constraint Handling Method for Genetic Algorithms , 2000 .

[36]  Konstantinos P. Anagnostopoulos,et al.  The mean-variance cardinality constrained portfolio optimization problem: An experimental evaluation of five multiobjective evolutionary algorithms , 2011, Expert Syst. Appl..

[37]  Yi Peng,et al.  Evaluation of clustering algorithms for financial risk analysis using MCDM methods , 2014, Inf. Sci..

[38]  Akbar Esfahanipour,et al.  A novel approach to dynamic portfolio trading system using multitree genetic programming , 2014, Knowl. Based Syst..

[39]  Cécile Murat,et al.  Recent advances in robust optimization: An overview , 2014, Eur. J. Oper. Res..

[40]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[41]  Thomas Breuer,et al.  Evolution on trees: On the design of an evolution strategy for scenario-based multi-period portfolio optimization under transaction costs , 2014, Swarm Evol. Comput..

[42]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[43]  Giovanni Fasano,et al.  Particle Swarm Optimization with non-smooth penalty reformulation, for a complex portfolio selection problem , 2013, Appl. Math. Comput..

[44]  Jun Li,et al.  Multi-objective portfolio selection model with fuzzy random returns and a compromise approach-based genetic algorithm , 2013, Inf. Sci..

[45]  Konstantinos P. Anagnostopoulos,et al.  Multiobjective evolutionary algorithms for complex portfolio optimization problems , 2011, Comput. Manag. Sci..

[46]  Abdullah Al Mamun,et al.  A memetic model of evolutionary PSO for computational finance applications , 2009, Expert Syst. Appl..

[47]  Kay Chen Tan,et al.  Evolutionary multi-objective portfolio optimization in practical context , 2008, Int. J. Autom. Comput..

[48]  Kalyanmoy Deb,et al.  Omni-optimizer: A generic evolutionary algorithm for single and multi-objective optimization , 2008, Eur. J. Oper. Res..

[49]  Minghe Sun,et al.  Robust optimization for interactive multiobjective programming with imprecise information applied to R&D project portfolio selection , 2014, Eur. J. Oper. Res..

[50]  Carlos Cotta,et al.  Evolutionary Optimization for Multiobjective Portfolio Selection under Markowitz's Model with Application to the Caracas Stock Exchange , 2009, Nature-Inspired Algorithms for Optimisation.