Existence and Strong Convergence Theorems for Generalized Mixed Equilibrium Problems of a Finite Family of Asymptotically Nonexpansive Mappings in Banach Spaces

We first prove the existence of solutions for a generalized mixed equilibrium problem under the new conditions imposed on the given bifunction and introduce the algorithm for solving a common element in the solution set of a generalized mixed equilibrium problem and the common fixed point set of finite family of asymptotically nonexpansive mappings. Next, the strong convergence theorems are obtained, under some appropriate conditions, in uniformly convex and smooth Banach spaces. The main results extend various results existing in the current literature.

[1]  P. L. Combettes,et al.  Equilibrium programming in Hilbert spaces , 2005 .

[2]  Wataru Takahashi,et al.  Approximating fixed points of nonexpansive mappings in a Banach space by metric projections , 2008, Appl. Math. Comput..

[3]  Yasunori Kimura,et al.  Some Characterizations for a Family of Nonexpansive Mappings and Convergence of a Generated Sequence to Their Common Fixed Point , 2009 .

[4]  Daniel Goeleven,et al.  Variational and Hemivariational Inequalities , 2003 .

[5]  W. Takahashi,et al.  Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups , 2003 .

[6]  W. Oettli,et al.  From optimization and variational inequalities to equilibrium problems , 1994 .

[7]  Nan-jing Huang,et al.  Variational-Like Inequalities with Generalized Monotone Mappings in Banach Spaces , 2003 .

[8]  E. Tarafdar,et al.  On nonlinear variational inequalities , 1977 .

[9]  W. R. Mann,et al.  Mean value methods in iteration , 1953 .

[10]  Rabian Wangkeeree,et al.  Existence theorems and iterative approximation methods for generalized mixed equilibrium problems for a countable family of nonexpansive mappings , 2012, J. Glob. Optim..

[11]  W. Takahashi,et al.  Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space , 2008 .

[12]  Yeol Je Cho,et al.  Weak and strong convergence theorems for three-step iterations with errors for asymptotically nonexpansive mappings☆ , 2004 .

[13]  A. Moudafi,et al.  SECOND-ORDER DIFFERENTIAL PROXIMAL METHODS FOR EQUILIBRIUM PROBLEMS , 2003 .

[14]  Hong-Kun Xu,et al.  Strong Convergence of Approximating Fixed Point Sequences for Nonexpansive Mappings , 2006, Bulletin of the Australian Mathematical Society.

[15]  R. U. Verma,et al.  Nonlinear variational inequalities on convex subsets of Banach spaces , 1997 .

[16]  Wataru Takahashi,et al.  Weak and Strong Convergence Theorems for a Nonexpansive Mapping and an Equilibrium Problem , 2007 .

[17]  Bronisław Knaster,et al.  Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe , 1929 .

[18]  Wataru Takahashi,et al.  Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces , 2008 .

[19]  Ravi P. Agarwal,et al.  Fixed Point Theory for Lipschitzian-type Mappings with Applications , 2009 .

[20]  William A. Kirk,et al.  A FIXED POINT THEOREM FOR ASYMPTOTICALLY NONEXPANSIVE MAPPINGS , 1972 .

[21]  Hossein Dehghan Approximating fixed points of asymptotically nonexpansive mappings in Banach spaces by metric projections , 2011, Appl. Math. Lett..

[22]  Heinz H. Bauschke,et al.  Projection and proximal point methods: convergence results and counterexamples , 2004 .

[23]  J. Lindenstrauss,et al.  An example concerning fixed points , 1975 .

[24]  S. Reich Weak convergence theorems for nonexpansive mappings in Banach spaces , 1979 .

[25]  Muhammed Aslam Noor,et al.  ON NONLINEAR VARIATIONAL INEQUALITIES , 1991 .