Quantifying hydrological modeling errors through a mixture of normal distributions

[1]  Keith Beven,et al.  A manifesto for the equifinality thesis , 2006 .

[2]  George Kuczera,et al.  Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .

[3]  B. Schaefli,et al.  Earth System , 2005 .

[4]  C. Diks,et al.  Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .

[5]  Roman Krzysztofowicz,et al.  Identification of likelihood and prior dependence structures for hydrologic uncertainty processor , 2004 .

[6]  Ashish Sharma,et al.  A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .

[7]  A. Brath,et al.  A stochastic approach for assessing the uncertainty of rainfall‐runoff simulations , 2004 .

[8]  W. E. Bardsley Temporal moments of a tracer pulse in a perfectly parallel flow system , 2003 .

[9]  Julian Havil Gamma: Exploring Euler's Constant , 2003 .

[10]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[11]  Quan J. Wang,et al.  Quantifying parameter uncertainty in stochastic models using the Box–Cox transformation , 2002 .

[12]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[13]  Lancelot F. James,et al.  Consistent estimation of mixture complexity , 2001 .

[14]  Roman Krzysztofowicz,et al.  Hydrologic uncertainty processor for probabilistic river stage forecasting: precipitation-dependent model , 2001 .

[15]  B. Bates,et al.  A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .

[16]  Chong-Yu Xu,et al.  Statistical Analysis of Parameters and Residuals of a Conceptual Water Balance Model – Methodology and Case Study , 2001 .

[17]  H. Haario,et al.  An adaptive Metropolis algorithm , 2001 .

[18]  Roman Krzysztofowicz,et al.  Hydrologic uncertainty processor for probabilistic river stage forecasting , 2000 .

[19]  George Kuczera,et al.  Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .

[20]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[21]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[22]  S. Richardson,et al.  Mixtures of distributions: inference and estimation , 1995 .

[23]  S. Chib,et al.  Understanding the Metropolis-Hastings Algorithm , 1995 .

[24]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[25]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[26]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[27]  Office Federal De Topographie Atlas hydrologique de la Suisse , 1992 .

[28]  Keith Beven,et al.  Changing ideas in hydrology — The case of physically-based models , 1989 .

[29]  Roy W. Koch,et al.  Bias in Hydrologic Prediction Using Log-Transformed Regression Models , 1986 .

[30]  A. F. Smith,et al.  Statistical analysis of finite mixture distributions , 1986 .

[31]  S. Sorooshian,et al.  Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .

[32]  G. Box,et al.  On a measure of lack of fit in time series models , 1978 .

[33]  W. Lane Extraction of information on inorganic water quality , 2007 .

[34]  Michael D. Geurts,et al.  Time Series Analysis: Forecasting and Control , 1977 .

[35]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[36]  G. Arfken Mathematical Methods for Physicists , 1967 .

[37]  D. Cox,et al.  An Analysis of Transformations , 1964 .

[38]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.