Quantifying hydrological modeling errors through a mixture of normal distributions
暂无分享,去创建一个
[1] Keith Beven,et al. A manifesto for the equifinality thesis , 2006 .
[2] George Kuczera,et al. Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory , 2006 .
[3] B. Schaefli,et al. Earth System , 2005 .
[4] C. Diks,et al. Improved treatment of uncertainty in hydrologic modeling: Combining the strengths of global optimization and data assimilation , 2005 .
[5] Roman Krzysztofowicz,et al. Identification of likelihood and prior dependence structures for hydrologic uncertainty processor , 2004 .
[6] Ashish Sharma,et al. A comparative study of Markov chain Monte Carlo methods for conceptual rainfall‐runoff modeling , 2004 .
[7] A. Brath,et al. A stochastic approach for assessing the uncertainty of rainfall‐runoff simulations , 2004 .
[8] W. E. Bardsley. Temporal moments of a tracer pulse in a perfectly parallel flow system , 2003 .
[9] Julian Havil. Gamma: Exploring Euler's Constant , 2003 .
[10] S. Sorooshian,et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .
[11] Quan J. Wang,et al. Quantifying parameter uncertainty in stochastic models using the Box–Cox transformation , 2002 .
[12] M. Trosset,et al. Bayesian recursive parameter estimation for hydrologic models , 2001 .
[13] Lancelot F. James,et al. Consistent estimation of mixture complexity , 2001 .
[14] Roman Krzysztofowicz,et al. Hydrologic uncertainty processor for probabilistic river stage forecasting: precipitation-dependent model , 2001 .
[15] B. Bates,et al. A Markov Chain Monte Carlo Scheme for parameter estimation and inference in conceptual rainfall‐runoff modeling , 2001 .
[16] Chong-Yu Xu,et al. Statistical Analysis of Parameters and Residuals of a Conceptual Water Balance Model – Methodology and Case Study , 2001 .
[17] H. Haario,et al. An adaptive Metropolis algorithm , 2001 .
[18] Roman Krzysztofowicz,et al. Hydrologic uncertainty processor for probabilistic river stage forecasting , 2000 .
[19] George Kuczera,et al. Monte Carlo assessment of parameter uncertainty in conceptual catchment models: the Metropolis algorithm , 1998 .
[20] Sylvia Richardson,et al. Markov Chain Monte Carlo in Practice , 1997 .
[21] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[22] S. Richardson,et al. Mixtures of distributions: inference and estimation , 1995 .
[23] S. Chib,et al. Understanding the Metropolis-Hastings Algorithm , 1995 .
[24] D. Rubin,et al. Inference from Iterative Simulation Using Multiple Sequences , 1992 .
[25] Keith Beven,et al. The future of distributed models: model calibration and uncertainty prediction. , 1992 .
[26] S. Sorooshian,et al. Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .
[27] Office Federal De Topographie. Atlas hydrologique de la Suisse , 1992 .
[28] Keith Beven,et al. Changing ideas in hydrology — The case of physically-based models , 1989 .
[29] Roy W. Koch,et al. Bias in Hydrologic Prediction Using Log-Transformed Regression Models , 1986 .
[30] A. F. Smith,et al. Statistical analysis of finite mixture distributions , 1986 .
[31] S. Sorooshian,et al. Stochastic parameter estimation procedures for hydrologie rainfall‐runoff models: Correlated and heteroscedastic error cases , 1980 .
[32] G. Box,et al. On a measure of lack of fit in time series models , 1978 .
[33] W. Lane. Extraction of information on inorganic water quality , 2007 .
[34] Michael D. Geurts,et al. Time Series Analysis: Forecasting and Control , 1977 .
[35] W. K. Hastings,et al. Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .
[36] G. Arfken. Mathematical Methods for Physicists , 1967 .
[37] D. Cox,et al. An Analysis of Transformations , 1964 .
[38] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.