Toward enhanced Natural Language Processing to databases: Building a specific domain Ontology derived from database conceptual model

Natural Language Interface to database NLIDB applications achieve great success when dealing with simple user requests, however most of NLIDB applications fail dramatically when users issue indirect or sophisticated requests. One modern approach to enhance NLIDB is using Ontology. Ontologies are very helpful when used with Natural Language Processing applications for supporting extraction of relevant elements from databases. This paper proposes a framework and a semi automatic procedure for building domain specific Ontology by using data conceptual model and general purpose Ontology such as WordNet. The aim is to help NLIDB understanding and simplifying indirect users data requests.

[1]  Peter P. Chen The Entity-Relationship Model: Towards a unified view of Data , 1976 .

[2]  Dieter Fensel,et al.  Ontobroker: Ontology Based Access to Distributed and Semi-Structured Information , 1999, DS-8.

[3]  Stephen Potter,et al.  Ontology Extraction for Distributed Environments , 2003, Knowledge Transformation for the Semantic Web.

[4]  Asunción Gómez-Pérez,et al.  Methodologies, tools and languages for building ontologies: Where is their meeting point? , 2003, Data Knowl. Eng..

[5]  Riichiro Mizoguchi,et al.  Tutorial on ontological engineering: part 3: Advanced course of ontological engineering , 2004 .

[6]  Dejing Dou,et al.  Knowledge Representation Formalisms and Methods—Representation , 2022 .

[7]  Peter P. Chen The entity-relationship model: toward a unified view of data , 1975, VLDB '75.

[8]  C. Fellbaum An Electronic Lexical Database , 1998 .

[9]  Sergio Tessaris,et al.  Extracting Ontologies from Relational Databases , 2007, Description Logics.

[10]  Christiane Fellbaum,et al.  Book Reviews: WordNet: An Electronic Lexical Database , 1999, CL.

[11]  Irina Astrova,et al.  Reverse Engineering of Relational Databases to Ontologies , 2004, ESWS.

[13]  Vasudeva Varma Building large scale ontology networks , 2002, Language Engineering Conference, 2002. Proceedings.

[14]  Olegas Vasilecas,et al.  Building ontologies from relational databases using reverse engineering methods , 2007, CompSysTech '07.

[15]  Václav Snásel,et al.  Using BFA with wordnet ontology based model for web retrieval , 2005, SITIS.

[16]  Asunción Gómez-Pérez,et al.  Six challenges for the Semantic Web , 2002, KR 2002.

[17]  Ladislav Hluchý,et al.  RDB 2 Onto : Approach for creating semantic metadata from relational database data , 2007 .

[18]  Man Li,et al.  Learning ontology from relational database , 2005, 2005 International Conference on Machine Learning and Cybernetics.

[19]  Pablo Castells,et al.  An Ontology-Based Information Retrieval Model , 2005, ESWC.

[20]  Paul Buitelaar,et al.  Ontology Learning from Text: An Overview , 2005 .

[21]  Safwan Shatnawi,et al.  An Approach for Developing Natural Language Interface to Databases Using Data Synonyms Tree and Syntax State Table , 2009, SCSS.

[22]  Vipul Kashyap,et al.  Design and Creation of Ontologies for Environmental Information Retrieval1 , 1999 .

[23]  Nazlia Omar,et al.  Heuristics-based entity-relationship modelling through natural language processing , 2005 .

[24]  E. Tansley,et al.  Using ontology to validate conceptual models , 2003, CACM.

[25]  Peter Thanisch,et al.  Natural language interfaces to databases – an introduction , 1995, Natural Language Engineering.

[26]  Frederico T. Fonseca,et al.  Bridging Ontologies and Conceptual Schemas in Geographic Applications Development , 2003 .

[27]  Silvia Miksch,et al.  Motivating Ontology-Driven Information Extraction , 2011 .