Concept Forgetting for ALCOI-Ontologies using an Ackermann Approach

We present a method for forgetting concept symbols in ontologies specified in the description logic $$\mathcal {ALCOI}$$. The method is an adaptation and improvement of a second-order quantifier elimination method developed for modal logics and used for computing correspondence properties for modal axioms. It follows an approach exploiting a result of Ackermann adapted to description logics. An important feature inherited from the modal approach is that the inference rules are guided by an ordering compatible with the elimination order of the concept symbols. This provides more control over the inference process and reduces non-determinism, resulting in a smaller search space. The method is extended with a new case splitting inference rule, and several simplification rules. Compared to related forgetting and uniform interpolation methods for description logics, the method can handle inverse roles, nominals and ABoxes. Compared to the modal approach on which it is based, it is more efficient in time and improves the success rates. The method has been implemented in Java using the OWL API. Experimental results show that the order in which the concept symbols are eliminated significantly affects the success rate and efficiency.

[1]  Jeff Z. Pan,et al.  Concept and Role Forgetting in ALC{\mathcal {ALC}} Ontologies , 2009, International Semantic Web Conference.

[2]  Harald Ganzinger,et al.  Refutational theorem proving for hierarchic first-order theories , 1994, Applicable Algebra in Engineering, Communication and Computing.

[3]  Hans Jürgen Ohlbach,et al.  SCAN - Elimination of Predicate Quantifiers , 1996, CADE.

[4]  Patrick Doherty,et al.  General Domain Circumscription and its Effective Reductions , 1998, Fundam. Informaticae.

[5]  Valentin Goranko,et al.  Algorithmic correspondence and completeness in modal logic. I. The core algorithm SQEMA , 2006, Log. Methods Comput. Sci..

[6]  Jeff Z. Pan,et al.  ELIMINATING CONCEPTS AND ROLES FROM ONTOLOGIES IN EXPRESSIVE DESCRIPTIVE LOGICS , 2014, Comput. Intell..

[7]  Patrick Koopmann,et al.  Saturated-Based Forgetting in the Description Logic SIF , 2015, Description Logics.

[8]  Bijan Parsia,et al.  LETHE: A Saturation-Based Tool for Non-Classical Reasoning , 2015 .

[9]  Valentin Goranko,et al.  SCAN Is Complete for All Sahlqvist Formulae , 2003, RelMiCS.

[10]  W. Ackermann Untersuchungen über das Eliminationsproblem der mathematischen Logik , 1935 .

[11]  Andrzej Sza Las On Correspondence Between Modal and Classical Logic: Automated Approach , 1992 .

[12]  Patrick Koopmann,et al.  Count and Forget: Uniform Interpolation of $\mathcal{SHQ}$ -Ontologies , 2014, IJCAR.

[13]  Patrick Doherty,et al.  Computing Circumscription Revisited: A Reduction Algorithm , 1997, Journal of Automated Reasoning.

[14]  Renate A. Schmidt,et al.  Forgetting Concept and Role Symbols in ALCOIHµ+(∇, ⊓)-Ontologies , 2016, IJCAI.

[15]  Patrick Koopmann,et al.  Uniform Interpolation and Forgetting for ALC Ontologies with ABoxes , 2014, AAAI.

[16]  Nadeschda Nikitina Forgetting in General EL Terminologies , 2011, Description Logics.

[17]  Patrick Koopmann,et al.  Forgetting Concept and Role Symbols in $\mathcal{ALCH}$ -Ontologies , 2013, LPAR.

[18]  Jeff Z. Pan,et al.  Forgetting Concepts in DL-Lite , 2008, ESWC.

[19]  Boris Konev,et al.  Model-theoretic inseparability and modularity of description logic ontologies , 2013, Artif. Intell..

[20]  Dov M. Gabbay,et al.  Second-Order Quantifier Elimination - Foundations, Computational Aspects and Applications , 2008, Studies in logic : Mathematical logic and foundations.

[21]  P. Koopmann,et al.  Uniform Interpolation of ALC-Ontologies Using Fixpoints , 2013 .

[22]  Dov M. Gabbay,et al.  Quantifier Elimination in Second-Order Predicate Logic , 1992, KR.

[23]  Andrzej Szalas On the Correspondence between Modal and Classical Logic: An Automated Approach , 1993, J. Log. Comput..

[24]  Andrzej Szalas,et al.  Second-order reasoning in description logics , 2006, J. Appl. Non Class. Logics.

[25]  Boris Motik,et al.  Reasoning over Ontologies with Hidden Content: The Import-by-Query Approach , 2012, J. Artif. Intell. Res..

[26]  Boris Konev,et al.  Towards Practical Uniform Interpolation and Forgetting for ALC TBoxes , 2013, Description Logics.

[27]  Carsten Lutz,et al.  Foundations for Uniform Interpolation and Forgetting in Expressive Description Logics , 2011, IJCAI.

[28]  Patrick Koopmann,et al.  Count and Forget : Uniform Interpolation of SHQ-Ontologies — Long Version ? , 2014 .

[29]  Jeff Z. Pan,et al.  Forgetting for knowledge bases in DL-Lite , 2010, Annals of Mathematics and Artificial Intelligence.

[30]  Boris Konev,et al.  Forgetting and Uniform Interpolation in Extensions of the Description Logic EL , 2009, Description Logics.

[31]  Renate A. Schmidt,et al.  The Ackermann approach for modal logic, correspondence theory and second-order reduction , 2012, J. Appl. Log..

[32]  A. Szałas,et al.  A Fixpoint Approach to Second-Order Quantifier Elimination with Applications to Correspondence Theory , 1999 .

[33]  Klaus Schild,et al.  A Correspondence Theory for Terminological Logics: Preliminary Report , 1991, IJCAI.

[34]  Jeff Z. Pan,et al.  Concept and Role Forgetting in ALC Ontologies , 2009, ISWC 2009.

[35]  Patrick Koopmann,et al.  Uniform Interpolation of -Ontologies Using Fixpoints , 2013, FroCos.

[36]  Patrick Koopmann,et al.  Implementation and Evaluation of Forgetting in ALC-Ontologies , 2013, WoMO.

[37]  Carsten Lutz,et al.  An Automata-Theoretic Approach to Uniform Interpolation and Approximation in the Description Logic EL , 2012, KR.