Robust topology optimization for cellular composites with hybrid uncertainties

This paper will develop a new robust topology optimization method for the concurrent design of cellular composites with an array of identical microstructures subject to random-interval hybrid uncertainties. A concurrent topology optimization framework is formulated to optimize both the composite macrostructure and the material microstructure. The robust objective function is defined based on interval mean and interval variance of the corresponding objective function. A new uncertain propagation approach, termed as a hybrid univariate dimension reduction (HUDR) method, is proposed to estimate the interval mean and variance. The sensitivity information of the robust objective function can be obtained after the uncertainty analysis. Several numerical examples are used to validate the effectiveness of the proposed robust topology optimization method.

[1]  Ramana V. Grandhi,et al.  A survey of structural and multidisciplinary continuum topology optimization: post 2000 , 2014 .

[2]  Zheng-Dong Ma,et al.  Topology optimization of structures with interval random parameters , 2016 .

[3]  Z. Kang,et al.  Continuum topology optimization with non-probabilistic reliability constraints based on multi-ellipsoid convex model , 2009 .

[4]  Manolis Papadrakakis,et al.  MODELING, ANALYSIS AND RELIABILITY OF SEISMICALLY EXCITED STRUCTURES: COMPUTATIONAL ISSUES , 2008 .

[5]  Gengdong Cheng,et al.  Recent development in structural design and optimization , 2010 .

[6]  Xu Guo,et al.  Multi-scale robust design and optimization considering load uncertainties , 2015 .

[7]  Scott Ferson,et al.  Constructing Probability Boxes and Dempster-Shafer Structures , 2003 .

[8]  J. Sethian,et al.  Structural Boundary Design via Level Set and Immersed Interface Methods , 2000 .

[9]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[10]  M. Wolcott Cellular solids: Structure and properties , 1990 .

[11]  M. Bendsøe,et al.  Material interpolation schemes in topology optimization , 1999 .

[12]  M. Tootkaboni,et al.  An efficient approach to reliability-based topology optimization for continua under material uncertainty , 2015, Structural and Multidisciplinary Optimization.

[13]  George I. N. Rozvany,et al.  Layout Optimization of Structures , 1995 .

[14]  R. Grandhi,et al.  Efficient estimation of structural reliability for problems with uncertain intervals , 2002 .

[15]  Z. Kang,et al.  Topological shape optimization of microstructural metamaterials using a level set method , 2014 .

[16]  Dejie Yu,et al.  Hybrid uncertain analysis of acoustic field with interval random parameters , 2013 .

[17]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[18]  Abdelkhalak El Hami,et al.  Reliability‐Based Topology Optimization , 2013 .

[19]  Gengdong Cheng,et al.  Multi-scale concurrent material and structural design under mechanical and thermal loads , 2016 .

[20]  B. Y. Ni,et al.  A probabilistic and interval hybrid reliability analysis method for structures with correlated uncertain parameters , 2015 .

[21]  H. Rodrigues,et al.  Hierarchical optimization of material and structure , 2002 .

[22]  Junpeng Zhao,et al.  Robust structural topology optimization under random field loading uncertainty , 2014 .

[23]  Weihong Zhang,et al.  Scale‐related topology optimization of cellular materials and structures , 2006 .

[24]  Gengdong Cheng,et al.  Multi-objective concurrent topology optimization of thermoelastic structures composed of homogeneous porous material , 2013 .

[25]  O. Sigmund,et al.  Topology optimization approaches , 2013, Structural and Multidisciplinary Optimization.

[26]  Anikó Csébfalvi Robust Topology Optimization: A New Algorithm for Volume-constrained Expected Compliance Minimization with Probabilistic Loading Directions using Exact Analytical Objective and Gradient , 2016 .

[27]  Di Wu,et al.  Hybrid uncertain static analysis with random and interval fields , 2017 .

[28]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[29]  Z. Luo,et al.  A new uncertain analysis method and its application in vehicle dynamics , 2015 .

[30]  C. Jiang,et al.  Structural reliability analysis based on random distributions with interval parameters , 2011 .

[31]  Xiaoping Du Interval Reliability Analysis , 2007, DAC 2007.

[32]  C. Jiang,et al.  Reliability-based design optimization for problems with interval distribution parameters , 2016, Structural and Multidisciplinary Optimization.

[33]  Gengdong Cheng,et al.  Optimum structure with homogeneous optimum truss-like material , 2008 .

[34]  G. Allaire,et al.  Structural optimization using sensitivity analysis and a level-set method , 2004 .

[35]  Liang Gao,et al.  Integrated design of cellular composites using a level-set topology optimization method , 2016 .

[36]  Kurt Maute,et al.  Topology Optimization under Uncertainty , 2014 .

[37]  E. L. Cardoso,et al.  Stress-based topology optimization of continuum structures under uncertainties , 2017 .

[38]  S. Rahman,et al.  A univariate dimension-reduction method for multi-dimensional integration in stochastic mechanics , 2004 .

[39]  Liang Gao,et al.  Topology optimization for concurrent design of structures with multi-patch microstructures by level sets , 2018 .

[40]  Luca Weisz,et al.  Design Sensitivity Analysis Of Structural Systems , 2016 .

[41]  I. Elishakoff,et al.  Convex models of uncertainty in applied mechanics , 1990 .

[42]  Yi Min Xie,et al.  Concurrent topology optimization for minimizing frequency responses of two-level hierarchical structures , 2016 .

[43]  Heegon Moon,et al.  Reliability-based topology optimization with uncertainties , 2006 .

[44]  C. Jiang,et al.  Probability-interval hybrid uncertainty analysis for structures with both aleatory and epistemic uncertainties: a review , 2018 .

[45]  G. Meng,et al.  An efficient method for evaluating the natural frequencies of structures with uncertain-but-bounded parameters , 2009 .

[46]  Anoop K. Dhingra,et al.  An efficient approach for reliability-based topology optimization , 2016 .

[47]  Y. Xie,et al.  Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials , 2009 .

[48]  Anath Fischer,et al.  On the Road to Personalized Medicine: Multiscale Computational Modeling of Bone Tissue , 2014 .

[49]  O. Sigmund A new class of extremal composites , 2000 .

[50]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[51]  Heiko Andrä,et al.  A new algorithm for topology optimization using a level-set method , 2006, J. Comput. Phys..

[52]  Casper Schousboe Andreasen,et al.  How to determine composite material properties using numerical homogenization , 2014 .

[53]  Z. Qiu,et al.  Hybrid uncertain analysis for steady-state heat conduction with random and interval parameters , 2015 .

[54]  Zhan Kang,et al.  Robust topology optimization for dynamic compliance minimization under uncertain harmonic excitations with inhomogeneous eigenvalue analysis , 2016 .

[55]  O. Sigmund,et al.  Design of manufacturable 3D extremal elastic microstructure , 2014 .

[56]  Bin Xu,et al.  Topology optimization of continuum structures with uncertain-but-bounded parameters for maximum non-probabilistic reliability of frequency requirement , 2017 .

[57]  Chuangchuang Sun,et al.  Reliability-based vibro-acoustic microstructural topology optimization , 2017 .

[58]  E. Hinton,et al.  A review of homogenization and topology optimization I- homogenization theory for media with periodic structure , 1998 .

[59]  Xiaoming Wang,et al.  A level set method for structural topology optimization , 2003 .

[60]  Wei Chen,et al.  Level set based robust shape and topology optimization under random field uncertainties , 2010, DAC 2009.

[61]  Jihong Zhu,et al.  Some Recent Advances in the Integrated Layout Design of Multicomponent Systems , 2011 .

[62]  Suxia Yang,et al.  Minimum Compliance Optimization of a Thermoelastic Lattice Structure with Size-Coupled Effects , 2015 .

[63]  Y. Xie,et al.  A simple evolutionary procedure for structural optimization , 1993 .

[64]  B. C. Chen,et al.  Composite material design of two‐dimensional structures using the homogenization design method , 2001 .

[65]  Z. Luo,et al.  Level-set topology optimization for mechanical metamaterials under hybrid uncertainties , 2017 .