Linear inequalities concerning partitions into distinct parts

Linear inequalities involving Euler’s partition function p(n) have been the subject of recent studies. In this article, we consider the partition function Q(n) counting the partitions of n into distinct parts. Using truncated theta series, we provide four infinite families of linear inequalities for Q(n) and partition theoretic interpretations for these results.

[1]  Mizan Rahman,et al.  Basic Hypergeometric Series: Author index , 1990 .

[2]  Kathy Q. Ji,et al.  Bilateral truncated Jacobi's identity , 2016, Eur. J. Comb..

[3]  Ae Ja Yee A truncated Jacobi triple product theorem , 2015, J. Comb. Theory, Ser. A.

[4]  Jiang Zeng,et al.  Two truncated identities of Gauss , 2012, J. Comb. Theory, Ser. A.

[5]  Song Heng Chan,et al.  Truncated series from the quintuple product identity , 2016 .

[6]  Renrong Mao,et al.  Proofs of two conjectures on truncated series , 2015, J. Comb. Theory, Ser. A.

[7]  A. Yee,et al.  Truncated Hecke-Rogers type series , 2020 .

[8]  Shane Chern A further look at the truncated pentagonal number theorem , 2018, Acta Arithmetica.

[9]  G. Andrews The Theory of Partitions: Frontmatter , 1976 .

[10]  George E. Andrews,et al.  Truncated theta series and a problem of Guo and Zeng , 2018, J. Comb. Theory, Ser. A.

[11]  Chun Wang,et al.  Truncated Jacobi triple product series , 2019, J. Comb. Theory, Ser. A.

[12]  L. J. Rogers On Two Theorems of Combinatory Analysis and Some Allied Identities , 1917 .

[13]  Mircea Merca,et al.  Combinatorial proofs of two truncated theta series theorems , 2018, J. Comb. Theory, Ser. A.

[14]  George E. Andrews,et al.  The truncated pentagonal number theorem , 2012, J. Comb. Theory, Ser. A.

[15]  M. Merca Combinatorial interpretations of a recent convolution for the number of divisors of a positive integer , 2016 .

[16]  Louis W. Kolitsch Another approach to the Truncated Pentagonal Number Theorem , 2015 .

[17]  Mizan Rahman,et al.  Basic Hypergeometric Series , 1990 .

[19]  Louis W. Kolitsch,et al.  Interpreting the Truncated Pentagonal Number Theorem using Partition Pairs , 2015, Electron. J. Comb..

[20]  M. Merca,et al.  A Truncated Theta Identity of Gauss and Overpartitions into Odd Parts , 2019, Annals of Combinatorics.