Constraints on Sterile Neutrino Models from Strong Gravitational Lensing, Milky Way Satellites, and the Lyman-α Forest.
暂无分享,去创建一个
T. Treu | A. Benson | D. Gilman | S. Birrer | K. Abazajian | A. Kusenko | I. Zelko | A. Nierenberg
[1] J. Cline,et al. Sterile neutrino production at small mixing in the early universe , 2022, Physics Letters B.
[2] S. Ando,et al. Warm dark matter constraints using Milky Way satellite observations and subhalo evolution modeling , 2021, Physical Review D.
[3] T. Treu,et al. Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies , 2021, 2101.07810.
[4] M. Viel,et al. Joint constraints on thermal relic dark matter from strong gravitational lensing, the Ly α forest, and Milky Way satellites , 2020, Monthly Notices of the Royal Astronomical Society.
[5] Claire E. Max,et al. Keck all sky precision adaptive optics , 2020, Astronomical Telescopes + Instrumentation.
[6] R. B. Barreiro,et al. Planck 2018 results , 2018, Astronomy & Astrophysics.
[7] T. Treu,et al. Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses , 2019, Monthly Notices of the Royal Astronomical Society.
[8] L. Moustakas,et al. Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism , 2019, Monthly Notices of the Royal Astronomical Society.
[9] K. Abazajian,et al. Hidden treasures: Sterile neutrinos as dark matter with miraculous abundance, structure formation for different production mechanisms, and a solution to the σ8 problem , 2019, Physical Review D.
[10] S. Pastor,et al. Thermalisation of sterile neutrinos in the early universe in the 3+1 scheme with full mixing matrix , 2019, Journal of Cosmology and Astroparticle Physics.
[11] C. Fassnacht,et al. SHARP – VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars , 2019, Monthly Notices of the Royal Astronomical Society.
[12] A. Boyarsky,et al. Sterile neutrino Dark Matter , 2018, Progress in Particle and Nuclear Physics.
[13] J. Frieman,et al. The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques , 2018, Monthly Notices of the Royal Astronomical Society.
[14] S. Vegetti,et al. Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z ∼ 0.2 , 2018, Monthly Notices of the Royal Astronomical Society.
[15] Michael Boylan-Kolchin,et al. Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.
[16] J. Lesgourgues,et al. Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos , 2017, 1706.03118.
[17] K. Abazajian. Sterile neutrinos in cosmology , 2017, 1705.01837.
[18] M. Viel,et al. “Non-cold” dark matter at small scales: a general approach , 2017, 1704.07838.
[19] Trystyn A. M. Berg,et al. New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-$\alpha$ forest data , 2017, 1702.01764.
[20] C. Fassnacht,et al. Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism , 2017, 1701.05188.
[21] A. Grazian,et al. Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies , 2017, 1701.01339.
[22] T. Treu,et al. The Missing Satellite Problem in 3D , 2016, 1603.01614.
[23] J. Lesgourgues,et al. A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.
[24] Aurel Schneider,et al. Astrophysical constraints on resonantly produced sterile neutrino dark matter , 2016, 1601.07553.
[25] et al.,et al. Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.
[26] M. Seigar. Dark Matter in the Universe , 2015 .
[27] Fabio Governato,et al. Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.
[28] A. Boyarsky,et al. Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.
[29] M. Markevitch,et al. DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.
[30] C. Fassnacht,et al. Detection of substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231 , 2014, 1402.1496.
[31] M. Viel,et al. Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.
[32] T. Treu,et al. THE COSMIC EVOLUTION OF FAINT SATELLITE GALAXIES AS A TEST OF GALAXY FORMATION AND THE NATURE OF DARK MATTER , 2013, 1302.3243.
[33] I. Tamborra,et al. Thermalisation of light sterile neutrinos in the early universe , 2012, 1204.5861.
[34] C. Fassnacht,et al. LUMINOUS SATELLITES. II. SPATIAL DISTRIBUTION, LUMINOSITY FUNCTION, AND COSMIC EVOLUTION , 2012, 1202.2125.
[35] R. Smith,et al. Non-linear evolution of cosmological structures in warm dark matter models , 2011, 1112.0330.
[36] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.
[37] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.
[38] J. Lesgourgues,et al. The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM , 2011, 1104.2934.
[39] K. Jarrod Millman,et al. Python for Scientists and Engineers , 2011, Comput. Sci. Eng..
[40] C. Fassnacht,et al. LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION , 2011, 1102.1426.
[41] Gaël Varoquaux,et al. The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.
[42] F. Takahashi,et al. Dark Matter from Split Seesaw , 2010, 1006.1731.
[43] D. Sluse,et al. Strong Lensing by Galaxies , 2010, 1003.5567.
[44] Ucsb,et al. Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.
[45] D. J. Fixsen,et al. THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.
[46] A. Kusenko. Sterile neutrinos: The Dark side of the light fermions , 2009, 0906.2968.
[47] J. Lesgourgues,et al. Lyman-alpha constraints on warm and on warm-plus-cold dark matter models , 2008, 0812.0010.
[48] K. Petraki. Small-scale structure formation properties of chilled sterile neutrinos as dark matter , 2008, 0801.3470.
[49] K. Petraki,et al. Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector , 2007, 0711.4646.
[50] Travis E. Oliphant,et al. Python for Scientific Computing , 2007, Computing in Science & Engineering.
[51] John D. Hunter,et al. Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.
[52] Alexander Kusenko,et al. Sterile Neutrinos , 1999, hep-ph/9903261.
[53] A. Kusenko. Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.
[54] M. Shaposhnikov,et al. The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.
[55] K. Abazajian. Linear Cosmological Structure Limits on Warm Dark Matter , 2005, astro-ph/0512631.
[56] K. Abazajian. Production and evolution of perturbations of sterile neutrino dark matter , 2005, astro-ph/0511630.
[57] T. Asaka,et al. The νMSM, dark matter and baryon asymmetry of the universe , 2005, hep-ph/0505013.
[58] J. Lesgourgues,et al. Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-{alpha} forest , 2005, astro-ph/0501562.
[59] S. Pascoli,et al. Pulsar kicks from a dark-matter sterile neutrino , 2003, astro-ph/0307267.
[60] S. Glashow,et al. Cosmological sign of neutrino CP violation , 2002, hep-ph/0208157.
[61] J. Ostriker,et al. Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.
[62] G. Fuller,et al. New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.
[63] A. Kusenko,et al. Neutral current induced neutrino oscillations in a supernova , 1997, hep-ph/9701311.
[64] Widrow,et al. Sterile neutrinos as dark matter. , 1993, Physical review letters.
[65] D. Spergel,et al. Dwarf spheroidal galaxies and the mass of the neutrino , 1992 .
[66] Joel R. Primack,et al. Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.