Constraints on Sterile Neutrino Models from Strong Gravitational Lensing, Milky Way Satellites, and the Lyman-α Forest.

The nature of dark matter is one of the most important unsolved questions in science. Some darkf matter candidates do not have sufficient nongravitational interactions to be probed in laboratory or accelerator experiments. It is thus important to develop astrophysical probes which can constrain or lead to a discovery of such candidates. We illustrate this using state-of-the-art measurements of strong gravitationally lensed quasars to constrain four of the most popular sterile neutrino models, and also report the constraints for other independent methods that are comparable in procedure. First, we derive effective relations to describe the correspondence between the mass of a thermal relic warm dark matter particle and the mass of sterile neutrinos produced via Higgs decay and grand unified theory (GUT)-scale scenarios, in terms of large-scale structure and galaxy formation astrophysical effects. Second, we show that sterile neutrinos produced through the Higgs decay mechanism are allowed only for mass >26  keV, and GUT-scale scenario >5.3  keV. Third, we show that the single sterile neutrino model produced through active neutrino oscillations is allowed for mass >92  keV, and the three sterile neutrino minimal standard model (νMSM) for mass >16  keV. These are the most stringent experimental limits on these models.

[1]  J. Cline,et al.  Sterile neutrino production at small mixing in the early universe , 2022, Physics Letters B.

[2]  S. Ando,et al.  Warm dark matter constraints using Milky Way satellite observations and subhalo evolution modeling , 2021, Physical Review D.

[3]  T. Treu,et al.  Dark Matter Constraints from a Unified Analysis of Strong Gravitational Lenses and Milky Way Satellite Galaxies , 2021, 2101.07810.

[4]  M. Viel,et al.  Joint constraints on thermal relic dark matter from strong gravitational lensing, the Ly α forest, and Milky Way satellites , 2020, Monthly Notices of the Royal Astronomical Society.

[5]  Claire E. Max,et al.  Keck all sky precision adaptive optics , 2020, Astronomical Telescopes + Instrumentation.

[6]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[7]  T. Treu,et al.  Warm dark matter chills out: constraints on the halo mass function and the free-streaming length of dark matter with eight quadruple-image strong gravitational lenses , 2019, Monthly Notices of the Royal Astronomical Society.

[8]  L. Moustakas,et al.  Double dark matter vision: twice the number of compact-source lenses with narrow-line lensing and the WFC3 grism , 2019, Monthly Notices of the Royal Astronomical Society.

[9]  K. Abazajian,et al.  Hidden treasures: Sterile neutrinos as dark matter with miraculous abundance, structure formation for different production mechanisms, and a solution to the σ8 problem , 2019, Physical Review D.

[10]  S. Pastor,et al.  Thermalisation of sterile neutrinos in the early universe in the 3+1 scheme with full mixing matrix , 2019, Journal of Cosmology and Astroparticle Physics.

[11]  C. Fassnacht,et al.  SHARP – VII. New constraints on the dark matter free-streaming properties and substructure abundance from gravitationally lensed quasars , 2019, Monthly Notices of the Royal Astronomical Society.

[12]  A. Boyarsky,et al.  Sterile neutrino Dark Matter , 2018, Progress in Particle and Nuclear Physics.

[13]  J. Frieman,et al.  The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques , 2018, Monthly Notices of the Royal Astronomical Society.

[14]  S. Vegetti,et al.  Constraining sterile neutrino cosmologies with strong gravitational lensing observations at redshift z ∼ 0.2 , 2018, Monthly Notices of the Royal Astronomical Society.

[15]  Michael Boylan-Kolchin,et al.  Small-Scale Challenges to the ΛCDM Paradigm , 2017, 1707.04256.

[16]  J. Lesgourgues,et al.  Constraints from Ly-α forests on non-thermal dark matter including resonantly-produced sterile neutrinos , 2017, 1706.03118.

[17]  K. Abazajian Sterile neutrinos in cosmology , 2017, 1705.01837.

[18]  M. Viel,et al.  “Non-cold” dark matter at small scales: a general approach , 2017, 1704.07838.

[19]  Trystyn A. M. Berg,et al.  New Constraints on the free-streaming of warm dark matter from intermediate and small scale Lyman-$\alpha$ forest data , 2017, 1702.01764.

[20]  C. Fassnacht,et al.  Probing dark matter substructure in the gravitational lens HE 0435-1223 with the WFC3 grism , 2017, 1701.05188.

[21]  A. Grazian,et al.  Fundamental Physics with the Hubble Frontier Fields: Constraining Dark Matter Models with the Abundance of Extremely Faint and Distant Galaxies , 2017, 1701.01339.

[22]  T. Treu,et al.  The Missing Satellite Problem in 3D , 2016, 1603.01614.

[23]  J. Lesgourgues,et al.  A White Paper on keV sterile neutrino Dark Matter , 2016, 1602.04816.

[24]  Aurel Schneider,et al.  Astrophysical constraints on resonantly produced sterile neutrino dark matter , 2016, 1601.07553.

[25]  et al.,et al.  Jupyter Notebooks - a publishing format for reproducible computational workflows , 2016, ELPUB.

[26]  M. Seigar Dark Matter in the Universe , 2015 .

[27]  Fabio Governato,et al.  Cold dark matter: Controversies on small scales , 2013, Proceedings of the National Academy of Sciences.

[28]  A. Boyarsky,et al.  Unidentified line in x-ray spectra of the Andromeda galaxy and Perseus galaxy cluster. , 2014, Physical review letters.

[29]  M. Markevitch,et al.  DETECTION OF AN UNIDENTIFIED EMISSION LINE IN THE STACKED X-RAY SPECTRUM OF GALAXY CLUSTERS , 2014, 1402.2301.

[30]  C. Fassnacht,et al.  Detection of substructure with adaptive optics integral field spectroscopy of the gravitational lens B1422+231 , 2014, 1402.1496.

[31]  M. Viel,et al.  Warm dark matter as a solution to the small scale crisis: New constraints from high redshift Lyman-α forest data , 2013, 1306.2314.

[32]  T. Treu,et al.  THE COSMIC EVOLUTION OF FAINT SATELLITE GALAXIES AS A TEST OF GALAXY FORMATION AND THE NATURE OF DARK MATTER , 2013, 1302.3243.

[33]  I. Tamborra,et al.  Thermalisation of light sterile neutrinos in the early universe , 2012, 1204.5861.

[34]  C. Fassnacht,et al.  LUMINOUS SATELLITES. II. SPATIAL DISTRIBUTION, LUMINOSITY FUNCTION, AND COSMIC EVOLUTION , 2012, 1202.2125.

[35]  R. Smith,et al.  Non-linear evolution of cosmological structures in warm dark matter models , 2011, 1112.0330.

[36]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) I: Overview , 2011, 1104.2932.

[37]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS). Part II: Approximation schemes , 2011, 1104.2933.

[38]  J. Lesgourgues,et al.  The Cosmic Linear Anisotropy Solving System (CLASS) III: Comparision with CAMB for LambdaCDM , 2011, 1104.2934.

[39]  K. Jarrod Millman,et al.  Python for Scientists and Engineers , 2011, Comput. Sci. Eng..

[40]  C. Fassnacht,et al.  LUMINOUS SATELLITES OF EARLY-TYPE GALAXIES. I. SPATIAL DISTRIBUTION , 2011, 1102.1426.

[41]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[42]  F. Takahashi,et al.  Dark Matter from Split Seesaw , 2010, 1006.1731.

[43]  D. Sluse,et al.  Strong Lensing by Galaxies , 2010, 1003.5567.

[44]  Ucsb,et al.  Gravitationally lensed quasars and supernovae in future wide-field optical imaging surveys , 2010, 1001.2037.

[45]  D. J. Fixsen,et al.  THE TEMPERATURE OF THE COSMIC MICROWAVE BACKGROUND , 2009, 0911.1955.

[46]  A. Kusenko Sterile neutrinos: The Dark side of the light fermions , 2009, 0906.2968.

[47]  J. Lesgourgues,et al.  Lyman-alpha constraints on warm and on warm-plus-cold dark matter models , 2008, 0812.0010.

[48]  K. Petraki Small-scale structure formation properties of chilled sterile neutrinos as dark matter , 2008, 0801.3470.

[49]  K. Petraki,et al.  Dark-matter sterile neutrinos in models with a gauge singlet in the Higgs sector , 2007, 0711.4646.

[50]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[51]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[52]  Alexander Kusenko,et al.  Sterile Neutrinos , 1999, hep-ph/9903261.

[53]  A. Kusenko Sterile neutrinos, dark matter, and pulsar velocities in models with a Higgs singlet. , 2006, Physical review letters.

[54]  M. Shaposhnikov,et al.  The nuMSM, inflation, and dark matter , 2006, hep-ph/0604236.

[55]  K. Abazajian Linear Cosmological Structure Limits on Warm Dark Matter , 2005, astro-ph/0512631.

[56]  K. Abazajian Production and evolution of perturbations of sterile neutrino dark matter , 2005, astro-ph/0511630.

[57]  T. Asaka,et al.  The νMSM, dark matter and baryon asymmetry of the universe , 2005, hep-ph/0505013.

[58]  J. Lesgourgues,et al.  Constraining warm dark matter candidates including sterile neutrinos and light gravitinos with WMAP and the Lyman-{alpha} forest , 2005, astro-ph/0501562.

[59]  S. Pascoli,et al.  Pulsar kicks from a dark-matter sterile neutrino , 2003, astro-ph/0307267.

[60]  S. Glashow,et al.  Cosmological sign of neutrino CP violation , 2002, hep-ph/0208157.

[61]  J. Ostriker,et al.  Halo Formation in Warm Dark Matter Models , 2000, astro-ph/0010389.

[62]  G. Fuller,et al.  New Dark Matter Candidate: Nonthermal Sterile Neutrinos , 1998, astro-ph/9810076.

[63]  A. Kusenko,et al.  Neutral current induced neutrino oscillations in a supernova , 1997, hep-ph/9701311.

[64]  Widrow,et al.  Sterile neutrinos as dark matter. , 1993, Physical review letters.

[65]  D. Spergel,et al.  Dwarf spheroidal galaxies and the mass of the neutrino , 1992 .

[66]  Joel R. Primack,et al.  Formation of galaxies and large-scale structure with cold dark matter , 1984, Nature.