A new identification method for Wiener and Hammerstein Systems
暂无分享,去创建一个
[1] L. Ljung,et al. Maximum likelihood identification of Wiener models with a linear regression initialization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[2] Jonas Sjöberg. Nonlinear Black-Box Structures -- Some Approaches and Some Examples , 1996 .
[3] Jozef Vörös,et al. Parameter identification of discontinuous hammerstein systems , 1997, Autom..
[4] Wlodzimierz Greblicki,et al. Nonparametric identification of Wiener systems , 1992, IEEE Trans. Inf. Theory.
[5] W. Greblicki. Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..
[6] Michel Gevers,et al. Identifiability of Scalar Linearly Parametrized Polynomial Systems , 1991 .
[7] Neil J. Bershad,et al. Stochastic analysis of adaptive gradient identification of Wiener-Hammerstein systems for Gaussian inputs , 2000, IEEE Trans. Signal Process..
[8] Torbjörn Wigren,et al. Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..
[9] Hanqing Zeng. Modeling, identification, and control of a multi-link lightweight manipulator , 1999 .
[10] T. Söderström,et al. Instrumental-variable methods for identification of Hammerstein systems , 1982 .
[11] W. R. Cluett,et al. Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .
[12] Grazyna Pajunen,et al. Adaptive control of wiener type nonlinear systems , 1992, Autom..
[13] T. Wigren. Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..
[14] Yucai Zhu,et al. Distillation column identification for control using Wiener model , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).
[15] K. Poolla,et al. New results for Hammerstein system identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[16] Georg Bretthauer,et al. Identification of MISO Wiener and Hammerstein systems , 2003, 2003 European Control Conference (ECC).
[17] M. Boutayeb,et al. Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..
[18] Y. Zhu. Identification of Hammerstein models for control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).
[19] T. Hsia. A multi-stage least squares method for identifying Hammerstein model nonlinear systems , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.
[20] R. Pearson,et al. Gray-box identification of block-oriented nonlinear models , 2000 .
[21] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[22] H. Unbehauen,et al. Identification Methods for Nonlinear MISO Systems , 1987 .
[23] J. Voros. Identification of Nonlinear Dynamic Systems Using Extended Hammerstein and Wiener Models , 1995 .
[24] Anna Hagenblad,et al. Aspects of the Identification of Wiener Models , 1999 .
[25] E. Bai. An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .
[26] Pieter Eykhoff,et al. System parameter and state estimation , 1972 .
[27] R. Luus,et al. A noniterative method for identification using Hammerstein model , 1971 .
[28] L. Ljung. Convergence analysis of parametric identification methods , 1978 .
[29] M. Gevers,et al. Identification of linearly overparametrized nonlinear systems , 1992 .
[30] M. Verhaegen,et al. Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[31] Lennart Ljung,et al. Theory and Practice of Recursive Identification , 1983 .
[32] Stephen A. Billings,et al. Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..
[33] Sheng Chen,et al. Orthogonal least squares methods and their application to non-linear system identification , 1989 .
[34] Martin Kortmann. Die Identifikation nichtlinearer Ein- und Mehrgrössensysteme auf der Basis nichtlinearer Modellansätze , 1989 .
[35] I. J. Leontaritis,et al. Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .
[36] Yucai Zhu,et al. Parametric Wiener Model Identification for Control , 1999 .
[37] Paul M. Frank,et al. Modelling and identification for highly nonlinear processes , 1998 .
[38] M. Schetzen,et al. Nonlinear system modeling based on the Wiener theory , 1981, Proceedings of the IEEE.
[39] Michel Verhaegen,et al. Linear and Non-linear System Identification Using Separable Least-Squares , 1997, Eur. J. Control.
[40] J. Kurth. Komprimierte Volterra-Reihen - ein neuer Modellansatz zur Identifikation nichtlinearer Systeme/ Reduced Volterra-series - a new model approach for identification of nonlinear systems , 1996 .
[41] K. Narendra,et al. An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .
[42] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[43] S. Billings,et al. Identification of nonlinear systems using the Wiener model , 1977 .
[44] Stephen A. Billings,et al. Identi cation of a class of nonlinear systems using correlation analysis , 1978 .
[45] Georg Bretthauer,et al. Identification of a wiener system with some general discontinuous nonlinearities , 2003 .
[46] M. L. Shone,et al. Exponential Smoothing with an Adaptive Response Rate , 1967 .
[47] Wlodzimierz Greblicki,et al. Recursive identification of continuous-time Wiener systems , 1999 .
[48] Karl Johan Åström,et al. BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.
[49] P. Van Overschee,et al. Subspace algorithms for the stochastic identification problem , 1991 .
[50] R. Pearson. Discrete-time Dynamic Models , 1999 .
[51] Jean-Marc Vesin,et al. Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems , 2000, IEEE Trans. Signal Process..
[52] Yaman Arkun,et al. Control of nonlinear systems using polynomial ARMA models , 1993 .
[53] L. A. Zadeh,et al. From Circuit Theory to System Theory , 1962, Proceedings of the IRE.
[54] Lennart Ljung,et al. System identification toolbox for use with MATLAB , 1988 .
[55] R. Brown,et al. Smoothing, Forecasting, and Prediction of Discrete Time Series , 1965 .
[56] J. Sjöberg. On estimation of nonlinear black-box models: how to obtain a good initialization , 1997 .
[57] W. Greblicki,et al. Continuous-time Wiener system identification , 1998, IEEE Trans. Autom. Control..
[58] R. Pearson,et al. Block‐oriented NARMAX models with output multiplicities , 1998 .
[59] Georg Bretthauer. Identifikation rückgekoppelter Mehrgrössensysteme im Frequenzbereich: einheitl. Darst. u. Vergleich d. Verfahren , 1983 .
[60] Sheng Chen,et al. Representations of non-linear systems: the NARMAX model , 1989 .
[61] Liuping Wang,et al. Robust frequency domain identification , 1992 .
[62] Michel Gevers,et al. What does system identification have to offer , 1982 .
[63] Er-Wei Bai,et al. Identification of linear systems with hard input nonlinearities of known structure , 2002, Autom..
[64] B. Anderson,et al. Adaptive frequency sampling filters , 1981 .
[65] Stanley H. Johnson,et al. Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .
[66] W. R. Cluett,et al. A new approach to the identification of pH processes based on the Wiener model , 1995 .
[67] M. J. Korenberg,et al. The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.
[68] Rolf Isermann,et al. Identifikation dynamischer Systeme , 1988 .
[69] Heinz Unbehauen,et al. Some new trends in identification and modeling of nonlinear dynamical systems , 1996 .
[70] R. Luus,et al. Nonlinear identification in the presence of correlated noise using a Hammerstein model , 1973 .
[71] M. Nazmul Karim,et al. A New Method for the Identification of Hammerstein Model , 1997, Autom..