A new identification method for Wiener and Hammerstein Systems

System identification is very important to technical and nontechnical areas. All physical systems are nonlinear to some extent and it is natural better to use nonlinear model to describe a real system. The Wiener and Hammerstein systems are proved to be good descriptions of nonlinear dynamic systems in which the nonlinear static subsystems and linear dynamic subsystems are separated in different order. Descriptions of different nonlinear systems need different Wiener and Hammerstein model structures. The aim of this doctoral dissertation is to develop an unified new recursive identification method in the prediction error method and model scheme for Wiener and Hammerstein systems; to derive the identification algorithms for a class of Wiener and Hammerstein model structures with continuous and discontinuous nonlinearities and to implement and test the algorithms with simulation examples in a MATLAB/Simulink environment. With the definition and extraction of intermediate variables by using the key term separation principle, a Wiener and Hammerstein system can be described by a nonlinear pseudo-regression model. If some suitable submodel structures are selected, such a nonlinear pseudo-regression model could be pseudo-linear and can be approximately transformed into a pseudo-linear MISO system. The intermediate variables can be estimated recursively. The errors in estimated parameters and in intermediate variables affect strongly the identification procedure and results. Therefore, the estimated parameters or rather the intermediate variables should be smoothed by using smoothing techniques. Under some common assumptions and by using the adaptive recursive pseudo-linear regressions (RPLR), satisfied parameter estimates of the Wiener and Hammerstein system can be obtained in the presence of a white or a coloured measurement noise without parameter redundancy. The new method gives good results for all considered Wiener and Hammerstein systems and for some comparable examples, the results are also better. The major advantage of the new method is its unity and efficiency. It can be easily extended to identify other block-oriented nonlinear dynamic systems.

[1]  L. Ljung,et al.  Maximum likelihood identification of Wiener models with a linear regression initialization , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[2]  Jonas Sjöberg Nonlinear Black-Box Structures -- Some Approaches and Some Examples , 1996 .

[3]  Jozef Vörös,et al.  Parameter identification of discontinuous hammerstein systems , 1997, Autom..

[4]  Wlodzimierz Greblicki,et al.  Nonparametric identification of Wiener systems , 1992, IEEE Trans. Inf. Theory.

[5]  W. Greblicki Nonparametric identification of Wiener systems by orthogonal series , 1994, IEEE Trans. Autom. Control..

[6]  Michel Gevers,et al.  Identifiability of Scalar Linearly Parametrized Polynomial Systems , 1991 .

[7]  Neil J. Bershad,et al.  Stochastic analysis of adaptive gradient identification of Wiener-Hammerstein systems for Gaussian inputs , 2000, IEEE Trans. Signal Process..

[8]  Torbjörn Wigren,et al.  Recursive prediction error identification using the nonlinear wiener model , 1993, Autom..

[9]  Hanqing Zeng Modeling, identification, and control of a multi-link lightweight manipulator , 1999 .

[10]  T. Söderström,et al.  Instrumental-variable methods for identification of Hammerstein systems , 1982 .

[11]  W. R. Cluett,et al.  Identification of Wiener-type nonlinear systems in a noisy environment , 1997 .

[12]  Grazyna Pajunen,et al.  Adaptive control of wiener type nonlinear systems , 1992, Autom..

[13]  T. Wigren Convergence analysis of recursive identification algorithms based on the nonlinear Wiener model , 1994, IEEE Trans. Autom. Control..

[14]  Yucai Zhu,et al.  Distillation column identification for control using Wiener model , 1999, Proceedings of the 1999 American Control Conference (Cat. No. 99CH36251).

[15]  K. Poolla,et al.  New results for Hammerstein system identification , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[16]  Georg Bretthauer,et al.  Identification of MISO Wiener and Hammerstein systems , 2003, 2003 European Control Conference (ECC).

[17]  M. Boutayeb,et al.  Recursive identification method for MISO Wiener-Hammerstein model , 1995, IEEE Trans. Autom. Control..

[18]  Y. Zhu Identification of Hammerstein models for control , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[19]  T. Hsia A multi-stage least squares method for identifying Hammerstein model nonlinear systems , 1976, 1976 IEEE Conference on Decision and Control including the 15th Symposium on Adaptive Processes.

[20]  R. Pearson,et al.  Gray-box identification of block-oriented nonlinear models , 2000 .

[21]  Lennart Ljung,et al.  Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..

[22]  H. Unbehauen,et al.  Identification Methods for Nonlinear MISO Systems , 1987 .

[23]  J. Voros Identification of Nonlinear Dynamic Systems Using Extended Hammerstein and Wiener Models , 1995 .

[24]  Anna Hagenblad,et al.  Aspects of the Identification of Wiener Models , 1999 .

[25]  E. Bai An optimal two stage identification algorithm for Hammerstein-Wiener nonlinear systems , 1998 .

[26]  Pieter Eykhoff,et al.  System parameter and state estimation , 1972 .

[27]  R. Luus,et al.  A noniterative method for identification using Hammerstein model , 1971 .

[28]  L. Ljung Convergence analysis of parametric identification methods , 1978 .

[29]  M. Gevers,et al.  Identification of linearly overparametrized nonlinear systems , 1992 .

[30]  M. Verhaegen,et al.  Identifying MIMO Wiener systems using subspace model identification methods , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[31]  Lennart Ljung,et al.  Theory and Practice of Recursive Identification , 1983 .

[32]  Stephen A. Billings,et al.  Identification of systems containing linear dynamic and static nonlinear elements , 1982, Autom..

[33]  Sheng Chen,et al.  Orthogonal least squares methods and their application to non-linear system identification , 1989 .

[34]  Martin Kortmann Die Identifikation nichtlinearer Ein- und Mehrgrössensysteme auf der Basis nichtlinearer Modellansätze , 1989 .

[35]  I. J. Leontaritis,et al.  Input-output parametric models for non-linear systems Part II: stochastic non-linear systems , 1985 .

[36]  Yucai Zhu,et al.  Parametric Wiener Model Identification for Control , 1999 .

[37]  Paul M. Frank,et al.  Modelling and identification for highly nonlinear processes , 1998 .

[38]  M. Schetzen,et al.  Nonlinear system modeling based on the Wiener theory , 1981, Proceedings of the IEEE.

[39]  Michel Verhaegen,et al.  Linear and Non-linear System Identification Using Separable Least-Squares , 1997, Eur. J. Control.

[40]  J. Kurth Komprimierte Volterra-Reihen - ein neuer Modellansatz zur Identifikation nichtlinearer Systeme/ Reduced Volterra-series - a new model approach for identification of nonlinear systems , 1996 .

[41]  K. Narendra,et al.  An iterative method for the identification of nonlinear systems using a Hammerstein model , 1966 .

[42]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[43]  S. Billings,et al.  Identification of nonlinear systems using the Wiener model , 1977 .

[44]  Stephen A. Billings,et al.  Identi cation of a class of nonlinear systems using correlation analysis , 1978 .

[45]  Georg Bretthauer,et al.  Identification of a wiener system with some general discontinuous nonlinearities , 2003 .

[46]  M. L. Shone,et al.  Exponential Smoothing with an Adaptive Response Rate , 1967 .

[47]  Wlodzimierz Greblicki,et al.  Recursive identification of continuous-time Wiener systems , 1999 .

[48]  Karl Johan Åström,et al.  BOOK REVIEW SYSTEM IDENTIFICATION , 1994, Econometric Theory.

[49]  P. Van Overschee,et al.  Subspace algorithms for the stochastic identification problem , 1991 .

[50]  R. Pearson Discrete-time Dynamic Models , 1999 .

[51]  Jean-Marc Vesin,et al.  Fluctuation analysis of stochastic gradient identification of polynomial Wiener systems , 2000, IEEE Trans. Signal Process..

[52]  Yaman Arkun,et al.  Control of nonlinear systems using polynomial ARMA models , 1993 .

[53]  L. A. Zadeh,et al.  From Circuit Theory to System Theory , 1962, Proceedings of the IRE.

[54]  Lennart Ljung,et al.  System identification toolbox for use with MATLAB , 1988 .

[55]  R. Brown,et al.  Smoothing, Forecasting, and Prediction of Discrete Time Series , 1965 .

[56]  J. Sjöberg On estimation of nonlinear black-box models: how to obtain a good initialization , 1997 .

[57]  W. Greblicki,et al.  Continuous-time Wiener system identification , 1998, IEEE Trans. Autom. Control..

[58]  R. Pearson,et al.  Block‐oriented NARMAX models with output multiplicities , 1998 .

[59]  Georg Bretthauer Identifikation rückgekoppelter Mehrgrössensysteme im Frequenzbereich: einheitl. Darst. u. Vergleich d. Verfahren , 1983 .

[60]  Sheng Chen,et al.  Representations of non-linear systems: the NARMAX model , 1989 .

[61]  Liuping Wang,et al.  Robust frequency domain identification , 1992 .

[62]  Michel Gevers,et al.  What does system identification have to offer , 1982 .

[63]  Er-Wei Bai,et al.  Identification of linear systems with hard input nonlinearities of known structure , 2002, Autom..

[64]  B. Anderson,et al.  Adaptive frequency sampling filters , 1981 .

[65]  Stanley H. Johnson,et al.  Use of Hammerstein Models in Identification of Nonlinear Systems , 1991 .

[66]  W. R. Cluett,et al.  A new approach to the identification of pH processes based on the Wiener model , 1995 .

[67]  M. J. Korenberg,et al.  The identification of nonlinear biological systems: Wiener and Hammerstein cascade models , 1986, Biological Cybernetics.

[68]  Rolf Isermann,et al.  Identifikation dynamischer Systeme , 1988 .

[69]  Heinz Unbehauen,et al.  Some new trends in identification and modeling of nonlinear dynamical systems , 1996 .

[70]  R. Luus,et al.  Nonlinear identification in the presence of correlated noise using a Hammerstein model , 1973 .

[71]  M. Nazmul Karim,et al.  A New Method for the Identification of Hammerstein Model , 1997, Autom..