Linear programming, complexity theory and elementary functional analysis

We propose analyzing interior-point methods using notions of problem-instance size which are direct generalizations of the condition number of a matrix. The notions pertain to linear programming quite generally; the underlying vector spaces are not required to be finite-dimensional and, more importantly, the cones defining nonnegativity are not required to be polyhedral. Thus, for example, the notions are appropriate in the context of semi-definite programming. We prove various theorems to demonstrate how the notions can be used in analyzing interior-point methods. These theorems assume little more than that the interiors of the cones (defining nonnegativity) are the domains of self-concordant barrier functions.

[1]  Michael J. Todd,et al.  Asymptotic Behavior of Interior-Point Methods: A View From Semi-Infinite Programming , 1996, Math. Oper. Res..

[2]  S. Smale,et al.  Complexity of Bézout’s theorem. I. Geometric aspects , 1993 .

[3]  Yinyu Ye,et al.  A primal-dual interior point method whose running time depends only on the constraint matrix , 1996, Math. Program..

[4]  C. C. Gonzaga,et al.  An Algorithm for Solving Linear Programming Problems in O(n 3 L) Operations , 1989 .

[5]  Margaret H. Wright,et al.  Interior methods for constrained optimization , 1992, Acta Numerica.

[6]  J. Demmel On condition numbers and the distance to the nearest ill-posed problem , 2015 .

[7]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[8]  Michael C. Ferris,et al.  An interior point algorithm for semi-infinite linear programming , 1989, Math. Program..

[9]  Y. Ye,et al.  Condition numbers for polyhedra with real number data , 1995, Oper. Res. Lett..

[10]  Michael J. Todd,et al.  Interior-point algorithms for semi-infinite programming , 1994, Math. Program..

[11]  Carl Kallina,et al.  Linear Programming in Reflexive Spaces , 1971 .

[12]  Clóvis C. Gonzaga,et al.  Path-Following Methods for Linear Programming , 1992, SIAM Rev..

[13]  Dick den Hertog,et al.  Interior Point Approach to Linear, Quadratic and Convex Programming: Algorithms and Complexity , 1994 .

[14]  Robert M. Freund,et al.  An infeasible-start algorithm for linear programming whose complexity depends on the distance from the starting point to the optimal solution , 1996, Ann. Oper. Res..

[15]  Jorge Rafael,et al.  Ill-posedness in mathematical programming and problem-solving with approximate data , 1992 .

[16]  James Renegar,et al.  On the Efficiency of Newton's Method in Approximating All Zeros of a System of Complex Polynomials , 1987, Math. Oper. Res..

[17]  E. Anderson,et al.  Linear programming in infinite-dimensional spaces : theory and applications , 1987 .

[18]  R. Weiner Lecture Notes in Economics and Mathematical Systems , 1985 .

[19]  Kenneth O. Kortanek,et al.  Semi-Infinite Programming and Applications , 1983, ISMP.

[20]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[21]  James Renegar,et al.  Unified complexity analysis for Newton LP methods , 1992, Math. Program..

[22]  J. Renegar Some perturbation theory for linear programming , 1994, Math. Program..

[23]  Yinyu Ye,et al.  An Accelerated Interior Point Method Whose Running Time Depends Only on $A$ , 1993 .

[24]  Narendra Karmarkar,et al.  A new polynomial-time algorithm for linear programming , 1984, STOC '84.

[25]  S. Smale,et al.  On a theory of computation and complexity over the real numbers; np-completeness , 1989 .

[26]  Jonathan M. Borwein,et al.  Partially finite convex programming, Part I: Quasi relative interiors and duality theory , 1992, Math. Program..

[27]  Stephen Smale,et al.  Complexity of Bezout's Theorem: III. Condition Number and Packing , 1993, J. Complex..

[28]  L. G. H. Cijan A polynomial algorithm in linear programming , 1979 .

[29]  Stephen Smale,et al.  Some Remarks on the Foundations of Numerical Analysis , 1990, SIAM Rev..

[30]  Sharon Filipowski,et al.  On the complexity of solving feasible systems of linear inequalities specified with approximate data , 1995, Math. Program..

[31]  C. C. Gonzaga,et al.  An algorithm for solving linear programming programs in O(n3L) operations , 1988 .

[32]  L. Khachiyan Polynomial algorithms in linear programming , 1980 .

[33]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[34]  James Renegar,et al.  Incorporating Condition Measures into the Complexity Theory of Linear Programming , 1995, SIAM J. Optim..

[35]  James Renegar,et al.  A polynomial-time algorithm, based on Newton's method, for linear programming , 1988, Math. Program..

[36]  S. Smale On the efficiency of algorithms of analysis , 1985 .

[37]  Jorge R. Vera Ill-Posedness and the Complexity of Deciding Existence of Solutions to Linear Programs , 1996, SIAM J. Optim..

[38]  James Renegar,et al.  Towards a computational complexity theory that uses approximate data and knowledge , 1993 .

[39]  S. Smale The fundamental theorem of algebra and complexity theory , 1981 .

[40]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .