Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators
暂无分享,去创建一个
[1] jassier. Université de Cergy-Pontoise , 2014 .
[2] Constanza Rojas-Molina,et al. Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators , 2012, 1210.5623.
[3] C. Molina. Etude mathématique des propriétés de transport des opérateurs de Schrödigner aléatoires avec structure quasi-cristalline , 2012 .
[4] J. Bourgain,et al. Bounds on the density of states for Schrödinger operators , 2011, 1112.1716.
[5] Constanza Rojas-Molina. Characterization of the Anderson Metal–Insulator Transition for Non Ergodic Operators and Application , 2011, 1110.4652.
[6] A. Klein,et al. A comprehensive proof of localization for continuous Anderson models with singular random potentials , 2011, 1105.0213.
[7] A. B. D. Monvel,et al. An uncertainty principle, Wegner estimates and localization near fluctuation boundaries , 2009, 0905.2845.
[8] J. Combes,et al. An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators , 2006, math-ph/0605029.
[9] A. Klein,et al. New Characterizations of the Region of Complete Localization for Random Schrödinger Operators , 2005, math-ph/0503017.
[10] J. Bourgain,et al. On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .
[11] A. Klein,et al. Explicit finite volume criteria for localization in continuous random media and applications , 2003 .
[12] A. Klein,et al. Bootstrap Multiscale Analysis and Localization¶in Random Media , 2001 .
[13] J. Combes,et al. Localization for Some Continuous, Random Hamiltonians in d-Dimensions , 1994 .
[14] J. Combes,et al. Hölder continuity of the integrated density of states for some random operators at all energies , 2003 .