Unique Continuation Principle for Spectral Projections of Schrödinger Operators and Optimal Wegner Estimates for Non-ergodic Random Schrödinger Operators

[1]  jassier Université de Cergy-Pontoise , 2014 .

[2]  Constanza Rojas-Molina,et al.  Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators , 2012, 1210.5623.

[3]  C. Molina Etude mathématique des propriétés de transport des opérateurs de Schrödigner aléatoires avec structure quasi-cristalline , 2012 .

[4]  J. Bourgain,et al.  Bounds on the density of states for Schrödinger operators , 2011, 1112.1716.

[5]  Constanza Rojas-Molina Characterization of the Anderson Metal–Insulator Transition for Non Ergodic Operators and Application , 2011, 1110.4652.

[6]  A. Klein,et al.  A comprehensive proof of localization for continuous Anderson models with singular random potentials , 2011, 1105.0213.

[7]  A. B. D. Monvel,et al.  An uncertainty principle, Wegner estimates and localization near fluctuation boundaries , 2009, 0905.2845.

[8]  J. Combes,et al.  An optimal Wegner estimate and its application to the global continuity of the integrated density of states for random Schrödinger operators , 2006, math-ph/0605029.

[9]  A. Klein,et al.  New Characterizations of the Region of Complete Localization for Random Schrödinger Operators , 2005, math-ph/0503017.

[10]  J. Bourgain,et al.  On localization in the continuous Anderson-Bernoulli model in higher dimension , 2005 .

[11]  A. Klein,et al.  Explicit finite volume criteria for localization in continuous random media and applications , 2003 .

[12]  A. Klein,et al.  Bootstrap Multiscale Analysis and Localization¶in Random Media , 2001 .

[13]  J. Combes,et al.  Localization for Some Continuous, Random Hamiltonians in d-Dimensions , 1994 .

[14]  J. Combes,et al.  Hölder continuity of the integrated density of states for some random operators at all energies , 2003 .