Multispot single-molecule FRET: High-throughput analysis of freely diffusing molecules

We describe an 8-spot confocal setup for high-throughput smFRET assays and illustrate its performance with two characteristic experiments. First, measurements on a series of freely diffusing doubly-labeled dsDNA samples allow us to demonstrate that data acquired in multiple spots in parallel can be properly corrected and result in measured sample characteristics identical to those obtained with a standard single-spot setup. We then take advantage of the higher throughput provided by parallel acquisition to address an outstanding question about the kinetics of the initial steps of bacterial RNA transcription. Our real-time kinetic analysis of promoter escape by bacterial RNA polymerase confirms results obtained by a more indirect route, shedding additional light on the initial steps of transcription. Finally, we discuss the advantages of our multispot setup, while pointing potential limitations of the current single laser excitation design, as well as analysis challenges and their solutions.

[1]  A. Ingargiola Applying Corrections in Single-Molecule FRET , 2016, bioRxiv.

[2]  S. Weiss,et al.  Backtracked and paused transcription initiation intermediate of Escherichia coli RNA polymerase , 2016, Proceedings of the National Academy of Sciences.

[3]  Ingargiola Antonino,et al.  8-spot smFRET measurements on 6 dsDNA samples , 2016 .

[4]  Ingargiola Antonino,et al.  smFRET μs-ALEX: 5 dsDNA samples , 2016 .

[5]  Antonino Ingargiola,et al.  FRETBursts: An Open Source Toolkit for Analysis of Freely-Diffusing Single-Molecule FRET , 2016, bioRxiv.

[6]  Antonino Ingargiola,et al.  Photon-HDF5: An Open File Format for Timestamp-Based Single-Molecule Fluorescence Experiments. , 2016, Biophysical journal.

[7]  Thomas A Steitz,et al.  Crystal structures of the E. coli transcription initiation complexes with a complete bubble. , 2015, Molecular cell.

[8]  Nam Ki Lee,et al.  Real-time submillisecond single-molecule FRET dynamics of freely diffusing molecules with liposome tethering , 2015, Nature Communications.

[9]  Z. You,et al.  Fundamentals of phase-only liquid crystal on silicon (LCOS) devices , 2014, Light: Science & Applications.

[10]  S. Weiss,et al.  Silicon Photon-Counting Avalanche Diodes for Single-Molecule Fluorescence Spectroscopy , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[11]  J. Vorholt,et al.  Structural basis for −10 promoter element melting by environmentally induced sigma factors , 2014, Nature Structural &Molecular Biology.

[12]  Benjamin Schuler,et al.  Microfluidic mixer designed for performing single-molecule kinetics with confocal detection on timescales from milliseconds to minutes , 2013, Nature Protocols.

[13]  Yuta Suzuki,et al.  Microsecond dynamics of an unfolded protein by a line confocal tracking of single molecule fluorescence , 2013, Scientific Reports.

[14]  Angelo Gulinatti,et al.  Compact 32-channel time-resolved single-photon detection system , 2013, Europe Optics + Optoelectronics.

[15]  Francesco Panzeri,et al.  8-spot smFRET analysis using two 8-pixel SPAD arrays , 2013, Photonics West - Biomedical Optics.

[16]  Francesco Panzeri,et al.  Single-molecule FRET experiments with a red-enhanced custom technology SPAD , 2013, Photonics West - Biomedical Optics.

[17]  A. Cheng,et al.  Development of new photon-counting detectors for single-molecule fluorescence microscopy , 2013, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  Angelo Gulinatti,et al.  A 48-pixel array of single photon avalanche diodes for multispot single molecule analysis , 2013, Photonics West - Optoelectronic Materials and Devices.

[19]  Volodymyr Kudryavtsev,et al.  Combining MFD and PIE for accurate single-pair Förster resonance energy transfer measurements. , 2012, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  A Ingargiola,et al.  Parallel multispot smFRET analysis using an 8-pixel SPAD array , 2012, BiOS.

[21]  Edoardo Charbon,et al.  FPGA implementation of a 32x32 autocorrelator array for analysis of fast image series. , 2011, Optics express.

[22]  Angelo Gulinatti,et al.  Improving the performance of silicon single-photon avalanche diodes , 2011, Defense + Commercial Sensing.

[23]  Ron R Lin,et al.  High-throughput single-molecule optofluidic analysis , 2011, Nature Methods.

[24]  Franco Zappa,et al.  Ultra high-throughput single molecule spectroscopy with a 1024 pixel SPAD , 2011, BiOS.

[25]  Jane Clarke,et al.  Quantifying heterogeneity and conformational dynamics from single molecule FRET of diffusing molecules: recurrence analysis of single particles (RASP). , 2011, Physical chemistry chemical physics : PCCP.

[26]  Angelo Gulinatti,et al.  High-throughput FCS using an LCOS spatial light modulator and an 8 × 1 SPAD array , 2010, Biomedical optics express.

[27]  A. Tosi,et al.  Two-Dimensional SPAD Imaging Camera for Photon Counting , 2010, IEEE Photonics Journal.

[28]  Francesco Panzeri,et al.  Planar silicon SPADs with improved photon detection efficiency , 2010, Defense + Commercial Sensing.

[29]  Ivan Rech,et al.  Multipixel single-photon avalanche diode array for parallel photon counting applications , 2009 .

[30]  A. Szabó,et al.  Theory of Photon Counting in Single-Molecule Spectroscopy , 2008 .

[31]  M. Orrit,et al.  Theory And Evaluation Of Single-molecule Signals , 2008 .

[32]  Antonino Ingargiola,et al.  Optical crosstalk in single photon avalanche diode arrays: a new complete model. , 2008, Optics express.

[33]  Rahul Roy,et al.  A practical guide to single-molecule FRET , 2008, Nature Methods.

[34]  X Michalet,et al.  Hybrid photodetector for single-molecule spectroscopy and microscopy , 2008, SPIE BiOS.

[35]  L. Hsu,et al.  Promoter Escape by Escherichia coli RNA Polymerase , 2008, EcoSal Plus.

[36]  Ivan Rech,et al.  Compact eight-channel photon counting module with monolithic array detector , 2007, SPIE Optics East.

[37]  S. Cova,et al.  Progress in Silicon Single-Photon Avalanche Diodes , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[38]  Shimon Weiss,et al.  Photobleaching pathways in single-molecule FRET experiments. , 2007, Journal of the American Chemical Society.

[39]  Thomas Dertinger,et al.  Two-focus fluorescence correlation spectroscopy: a new tool for accurate and absolute diffusion measurements. , 2007, Chemphyschem : a European journal of chemical physics and physical chemistry.

[40]  Ivan Rech,et al.  Monolithic silicon matrix detector with 50 μm photon counting pixels , 2007 .

[41]  Shimon Weiss,et al.  Initial Transcription by RNA Polymerase Proceeds Through a DNA-Scrunching Mechanism , 2006, Science.

[42]  Shimon Weiss,et al.  Shot-noise limited single-molecule FRET histograms: comparison between theory and experiments. , 2006, The journal of physical chemistry. B.

[43]  J. Ozmore,et al.  Initial transcribed sequence mutations specifically affect promoter escape properties. , 2006, Biochemistry.

[44]  A. Szabó,et al.  Theory of the statistics of kinetic transitions with application to single-molecule enzyme catalysis. , 2006, The Journal of chemical physics.

[45]  Thomas Huser,et al.  Fast, flexible algorithm for calculating photon correlations. , 2006, Optics letters.

[46]  Suren Felekyan,et al.  Separating structural heterogeneities from stochastic variations in fluorescence resonance energy transfer distributions via photon distribution analysis. , 2006, The journal of physical chemistry. B.

[47]  R. Ebright,et al.  Direct observation of abortive initiation and promoter escape within single immobilized transcription complexes. , 2006, Biophysical journal.

[48]  Henrik Flyvbjerg,et al.  A non-Gaussian distribution quantifies distances measured with fluorescence localization techniques. , 2006, Biophysical journal.

[49]  S. Block,et al.  Picocalorimetry of transcription by RNA polymerase. , 2005, Biophysical journal.

[50]  W. Greenleaf,et al.  Direct observation of base-pair stepping by RNA polymerase , 2005, Nature.

[51]  T. Laurence,et al.  Retention of transcription initiation factor sigma70 in transcription elongation: single-molecule analysis. , 2005, Molecular cell.

[52]  Christoph Bräuchle,et al.  Pulsed interleaved excitation. , 2005, Biophysical journal.

[53]  Nam Ki Lee,et al.  Alternating-laser excitation of single molecules. , 2005, Accounts of chemical research.

[54]  Nam Ki Lee,et al.  Accurate FRET measurements within single diffusing biomolecules using alternating-laser excitation. , 2005, Biophysical journal.

[55]  Hiroyuki Fujita,et al.  Microfabricated arrays of femtoliter chambers allow single molecule enzymology , 2005, Nature Biotechnology.

[56]  Nam Ki Lee,et al.  Fluorescence-aided molecule sorting: Analysis of structure and interactions by alternating-laser excitation of single molecules , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[57]  Jörg Enderlein,et al.  Art and artefacts of fluorescence correlation spectroscopy. , 2004, Current pharmaceutical biotechnology.

[58]  Joachim D. Müller,et al.  The photon counting histogram in fluorescence fluctuation spectroscopy with non-ideal photodetectors. , 2003, Biophysical journal.

[59]  Bo Chen,et al.  Afterpulsing and its correction in fluorescence correlation spectroscopy experiments. , 2003, Applied optics.

[60]  E. Rhoades,et al.  Watching proteins fold one molecule at a time , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[61]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[62]  Michelle D. Wang,et al.  Single molecule analysis of RNA polymerase elongation reveals uniform kinetic behavior , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[63]  W. Webb,et al.  Focal volume optics and experimental artifacts in confocal fluorescence correlation spectroscopy. , 2002, Biophysical journal.

[64]  Karsten Rippe,et al.  Analysis of Ligand Binding by Two-Colour Fluorescence Cross-Correlation Spectroscopy , 2002 .

[65]  Jennifer L. Knight,et al.  Structural Organization of Bacterial RNA Polymerase Holoenzyme and the RNA Polymerase-Promoter Open Complex , 2002, Cell.

[66]  S. Darst,et al.  Structure of the Bacterial RNA Polymerase Promoter Specificity σ Subunit , 2002 .

[67]  O. Krichevsky,et al.  Fluorescence correlation spectroscopy: the technique and its applications , 2002 .

[68]  R. Ebright,et al.  Translocation of σ70 with RNA Polymerase during Transcription Fluorescence Resonance Energy Transfer Assay for Movement Relative to DNA , 2001, Cell.

[69]  A Volkmer,et al.  Data registration and selective single-molecule analysis using multi-parameter fluorescence detection. , 2001, Journal of biotechnology.

[70]  Shimon Weiss,et al.  Ratiometric measurement and identification of single diffusing molecules , 1999 .

[71]  M Dahan,et al.  Single-pair fluorescence resonance energy transfer on freely diffusing molecules: observation of Förster distance dependence and subpopulations. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  Christian Eggeling,et al.  Quantitative identification of different single molecules by selective time-resolved confocal fluorescence spectroscopy. , 1998 .

[73]  P. Schwille,et al.  Dual-color fluorescence cross-correlation spectroscopy for multicomponent diffusional analysis in solution. , 1997, Biophysical journal.

[74]  M. C. Jones,et al.  A Brief Survey of Bandwidth Selection for Density Estimation , 1996 .

[75]  H. Bujard,et al.  Stalling of Escherichia coli RNA polymerase in the +6 to +12 region in vivo is associated with tight binding to consensus promoter elements. , 1994, Journal of molecular biology.

[76]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[77]  F. Sigworth,et al.  Data transformations for improved display and fitting of single-channel dwell time histograms. , 1987, Biophysical journal.

[78]  C. Seidel,et al.  Accurate single-molecule FRET studies using multiparameter fluorescence detection. , 2010, Methods in enzymology.

[79]  Nam Ki Lee,et al.  Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. , 2007, Biophysical journal.

[80]  S. Darst,et al.  Structure of the bacterial RNA polymerase promoter specificity sigma subunit. , 2002, Molecular cell.

[81]  J. Lakowicz Topics in fluorescence spectroscopy , 2002 .

[82]  William H. Press,et al.  Numerical recipes in C , 2002 .

[83]  N. Thompson,et al.  Fluorescence Correlation Spectroscopy , 2002 .

[84]  R. Rigler,et al.  Fluorescence correlation spectroscopy , 2001 .

[85]  Daniel B. Carr,et al.  Hexagon Mosaic Maps for Display of Univariate and Bivariate Geographical Data , 1992 .

[86]  R. Clegg Fluorescence resonance energy transfer and nucleic acids. , 1992, Methods in enzymology.