Dielectric–magnetic synergistic design of Ti3C2Tx@C/NiZn ferrite composite for effective microwave absorption performance

[1]  Xian Jian,et al.  High-temperature stability core-shell engineered Ti3AlC2@C@SiO2 for excellent microwave absorbing properties , 2023, Vacuum.

[2]  Changyu Shen,et al.  Flexible thermoplastic polyurethane/MXene foams for compressible electromagnetic interference shielding , 2023, Materials Today Physics.

[3]  Y. Bao,et al.  Lightweight Honeycomb rGO/Ti3C2Tx MXene Aerogel without Magnetic Metals toward Efficient Electromagnetic Wave Absorption Performance , 2023, ACS Applied Electronic Materials.

[4]  Xin Wang,et al.  Electrically aligned Ti3C2Tx MXene composite with multilayered gradient structure for broadband microwave absorption , 2022, Carbon.

[5]  Xian Wang,et al.  Ti3C2Tx MXene@NiFe Layered Double Hydroxide Derived Multiple Interfacial Composites with Efficient Microwave Absorption , 2022, Journal of Alloys and Compounds.

[6]  W. Que,et al.  3D Porous Compact 1D/2D Fe2 O3 /MXene Composite Aerogel Film Electrodes for All-Solid-State Supercapacitors. , 2022, Small.

[7]  Wei Jiang,et al.  Ti3C2TX MXene Beaded SiC Nanowires for Efficient Microwave Absorption , 2022, ACS Applied Nano Materials.

[8]  Jianmao Yang,et al.  An Fe-MOF/MXene-based Ultra-Sensitive Electrochemical Sensor for Arsenic(III) measurement , 2022, Journal of Electroanalytical Chemistry.

[9]  E. Wang,et al.  Studying Plasmon Dispersion of MXene for Enhanced Electromagnetic Absorption , 2022, Advanced materials.

[10]  Run‐Wei Li,et al.  0D/1D/2D architectural Co@C/MXene composite for boosting microwave attenuation performance in 2–18 GHz , 2022, Carbon.

[11]  Xian Jian,et al.  In situ regulation of microstructure and microwave-absorbing properties of FeSiAl through HNO3 oxidation , 2021, Nanotechnology Reviews.

[12]  Y. Bao,et al.  Dual-loss Ti3C2Tx MXene/Ni0.6Zn0.4Fe2O4 heterogeneous nanocomposites for highly efficient electromagnetic wave absorption , 2021 .

[13]  Yuchi Fan,et al.  A Robust Hierarchical MXene/Ni/Aluminosilicate Glass Composite for High‐Performance Microwave Absorption , 2021, Advanced science.

[14]  E. Taheri-nassaj,et al.  Enhanced electromagnetic wave absorption performance of Ni-Zn ferrite through the added structural macroporosity , 2021, Journal of Materials Research and Technology.

[15]  Muhammad Tahir,et al.  Constructing S-scheme 2D/0D g-C3N4/TiO2 NPs/MPs heterojunction with 2D-Ti3AlC2 MAX cocatalyst for photocatalytic CO2 reduction to CO/CH4 in fixed-bed and monolith photoreactors , 2021, Journal of Materials Science & Technology.

[16]  Zhimei Sun,et al.  Interfacial optimization of PtNi octahedrons@Ti3C2MXene with enhanced alkaline hydrogen evolution activity and stability , 2021 .

[17]  L. Bi,et al.  MXene-based accordion 2D hybrid structure with Co9S8/C/Ti3C2Tx as efficient electromagnetic wave absorber , 2021 .

[18]  R. Che,et al.  Hollow Engineering to Co@N‐Doped Carbon Nanocages via Synergistic Protecting‐Etching Strategy for Ultrahigh Microwave Absorption , 2021, Advanced Functional Materials.

[19]  G. Ji,et al.  Environmentally Friendly and Multifunctional Shaddock Peel-Based Carbon Aerogel for Thermal-Insulation and Microwave Absorption , 2021, Nano-Micro Letters.

[20]  Gongpin Liu,et al.  Fabrication of surface-charged MXene membrane and its application for water desalination , 2021, Journal of Membrane Science.

[21]  Changyu Shen,et al.  Multifunctional Magnetic Ti3C2Tx MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. , 2021, ACS nano.

[22]  Qianqian Wang,et al.  3D Porous Oxidation‐Resistant MXene/Graphene Architectures Induced by In Situ Zinc Template toward High‐Performance Supercapacitors , 2021, Advanced Functional Materials.

[23]  Xinming Wu,et al.  Rational construction of hierarchical Co@C@NPC nanocomposites derived from bimetallic hybrid ZIFs/biomass for boosting the microwave absorption. , 2021, Journal of colloid and interface science.

[24]  Jun Pyo Hong,et al.  Anomalous absorption of electromagnetic waves by 2D transition metal carbonitride Ti3CNTx (MXene) , 2020, Science.

[25]  Guangzhen Cui,et al.  Facile synthesis 3D porous MXene Ti3C2Tx@RGO composite aerogel with excellent dielectric loss and electromagnetic wave absorption , 2020 .

[26]  Y. H. Li,et al.  Electrospun generation of Ti3C2Tx MXene@graphene oxide hybrid aerogel microspheres for tunable high-performance microwave absorption , 2020 .

[27]  L. Kong,et al.  Delamination strategy to achieve Ti3C2Tx/CNZF composites with tunable electromagnetic absorption , 2020 .

[28]  Zhichuan J. Xu,et al.  A Flexible and Lightweight Biomass-Reinforced Microwave Absorber , 2020, Nano-micro letters.

[29]  Luo Kong,et al.  Graphene and MXene Nanomaterials: Toward High‐Performance Electromagnetic Wave Absorption in Gigahertz Band Range , 2020, Advanced Functional Materials.

[30]  L. Wang,et al.  MOF-derived yolk-shell Ni@C@ZnO Schottky contact structure for enhanced microwave absorption , 2020 .

[31]  C. Cao,et al.  Tunable electromagnetic and enhanced microwave absorption properties in CoFe2O4 decorated Ti3C2 MXene composites , 2020 .

[32]  R. Hu,et al.  One‐Step Synthesis of Nanostructured CoS2 Grown on Titanium Carbide MXene for High‐Performance Asymmetrical Supercapacitors , 2020, Advanced Materials Interfaces.

[33]  M. Zhang,et al.  Molecular Patching Engineering to Drive Energy Conversion as Efficient and Environment‐Friendly Cell toward Wireless Power Transmission , 2020, Advanced Functional Materials.

[34]  R. Che,et al.  Self-assembly magnetized MXene avoid dual-agglomeration with enhanced interfaces for Strong Microwave Absorption through Tunable Electromagnetic Property. , 2019, ACS applied materials & interfaces.

[35]  L. Lee,et al.  Highly Enhanced Pseudocapacitive Performance of Vanadium-Doped MXenes in Neutral Electrolytes. , 2019, Small.

[36]  Yunhao Zhao,et al.  Boosted Interfacial Polarization from Multishell TiO2 @Fe3 O4 @PPy Heterojunction for Enhanced Microwave Absorption. , 2019, Small.

[37]  X. Zhang,et al.  Novel solvothermal preparation and enhanced microwave absorption properties of Ti3C2Tx MXene modified by in situ coated Fe3O4 nanoparticles , 2019, Applied Surface Science.

[38]  Guanglei Wu,et al.  Synthesis of Ti3C2/Fe3O4/PANI hierarchical architecture composite as an efficient wide-band electromagnetic absorber , 2019, Applied Surface Science.

[39]  Zhanhu Guo,et al.  Ultralight, highly compressible and fire-retardant graphene aerogel with self-adjustable electromagnetic wave absorption , 2018, Carbon.

[40]  Jingquan Liu,et al.  Solvent-regulated preparation of well-intercalated Ti3C2Tx MXene nanosheets and application for highly effective electromagnetic wave absorption , 2018, Nanotechnology.

[41]  Xiao Zhenyu,et al.  Dielectric relaxation and microwave absorption properties of aurivillius-type multiferroic ceramics , 2018, Ceramics International.

[42]  Xi Xie,et al.  Novel two-dimensional Ti3C2Tx MXenes/nano-carbon sphere hybrids for high-performance microwave absorption , 2018 .

[43]  Wei Li,et al.  Direct Growth of Edge‐Rich Graphene with Tunable Dielectric Properties in Porous Si3N4 Ceramic for Broadband High‐Performance Microwave Absorption , 2018 .

[44]  S. Du,et al.  Facile preparation of in situ coated Ti3C2Tx/Ni0.5Zn0.5Fe2O4 composites and their electromagnetic performance , 2017 .

[45]  Laifei Cheng,et al.  Three-dimensional reduced graphene oxide foam modified with ZnO nanowires for enhanced microwave absorption properties , 2017 .

[46]  Lai-fei Cheng,et al.  Ti3C2 MXenes modified with in situ grown carbon nanotubes for enhanced electromagnetic wave absorption properties , 2017 .

[47]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[48]  Xinghong Zhang,et al.  In Situ Growth of Core-Sheath Heterostructural SiC Nanowire Arrays on Carbon Fibers and Enhanced Electromagnetic Wave Absorption Performance. , 2017, ACS applied materials & interfaces.

[49]  Wan-cheng Zhou,et al.  Titanium carbide (MXene) nanosheets as promising microwave absorbers , 2016 .

[50]  Fan Wu,et al.  In situ growth of MoS2 nanosheets on reduced graphene oxide (RGO) surfaces: interfacial enhancement of absorbing performance against electromagnetic pollution. , 2016, Physical chemistry chemical physics : PCCP.

[51]  Yury Gogotsi,et al.  Electromagnetic interference shielding with 2D transition metal carbides (MXenes) , 2016, Science.

[52]  Lai-fei Cheng,et al.  Ti3C2 MXenes with Modified Surface for High-Performance Electromagnetic Absorption and Shielding in the X-Band. , 2016, ACS applied materials & interfaces.

[53]  S. Dou,et al.  Facile Synthesis of Fe3O4/GCs Composites and Their Enhanced Microwave Absorption Properties. , 2016, ACS applied materials & interfaces.

[54]  Kevin M. Cook,et al.  X-ray photoelectron spectroscopy of select multi-layered transition metal carbides (MXenes) , 2016 .

[55]  Lan-sun Zheng,et al.  MOF-Derived Porous Co/C Nanocomposites with Excellent Electromagnetic Wave Absorption Properties. , 2015, ACS applied materials & interfaces.

[56]  Youwei Du,et al.  Porous Three-Dimensional Flower-like Co/CoO and Its Excellent Electromagnetic Absorption Properties. , 2015, ACS applied materials & interfaces.

[57]  Ying Huang,et al.  Cubic NiFe2O4 particles on graphene–polyaniline and their enhanced microwave absorption properties , 2015 .

[58]  Yury Gogotsi,et al.  Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance , 2014, Nature.

[59]  Shiwei Lin,et al.  Microwave absorption properties of carbon nanocoils coated with highly controlled magnetic materials by atomic layer deposition. , 2012, ACS nano.

[60]  V. Presser,et al.  Two‐Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 , 2011, Advanced materials.

[61]  Yang Liu,et al.  Microwave absorption properties of the carbon-coated nickel nanocapsules , 2006 .

[62]  Binghui Xu,et al.  Self-assembled MoS2/magnetic ferrite CuFe2O4 nanocomposite for high-efficiency microwave absorption , 2022, Chemical Engineering Journal.

[63]  M. Pumera,et al.  Electrically reading a light-driven molecular switch on 2D-Ti3C2Tx MXene via molecular engineering: towards responsive MXetronics , 2022, Journal of Materials Chemistry A.

[64]  Bingbing Wang,et al.  Preparation of two-dimensional titanium carbide (Ti3C2Tx) and NiCo2O4 composites to achieve excellent microwave absorption properties , 2020 .

[65]  Guoxiu Tong,et al.  Co/C/Fe/C hierarchical flowers with strawberry-like surface as surface plasmon for enhanced permittivity, permeability, and microwave absorption properties , 2019, Chemical Engineering Journal.