Generic Inference on Quantile and Quantile Effect Functions for Discrete Outcomes

Abstract Quantile and quantile effect (QE) functions are important tools for descriptive and causal analysis due to their natural and intuitive interpretation. Existing inference methods for these functions do not apply to discrete random variables. This article offers a simple, practical construction of simultaneous confidence bands for quantile and QE functions of possibly discrete random variables. It is based on a natural transformation of simultaneous confidence bands for distribution functions, which are readily available for many problems. The construction is generic and does not depend on the nature of the underlying problem. It works in conjunction with parametric, semiparametric, and nonparametric modeling methods for observed and counterfactual distributions, and does not depend on the sampling scheme. We apply our method to characterize the distributional impact of insurance coverage on health care utilization and obtain the distributional decomposition of the racial test score gap. We find that universal insurance coverage increases the number of doctor visits across the entire distribution, and that the racial test score gap is small at early ages but grows with age due to socio-economic factors especially at the top of the distribution. Supplementary materials (additional results, R package, replication files) for this article are available online.

[1]  Furno Marilena,et al.  Quantile Regression , 2018, Wiley Series in Probability and Statistics.

[2]  Roger Koenker,et al.  Quantile Regression : Penalized from : Handbook of Quantile Regression , 2018 .

[3]  V. Chernozhukov,et al.  Extremal quantile regression: An overview , 2016, 1612.06850.

[4]  Zhongjun Qu,et al.  Nonparametric estimation and inference on conditional quantile processes , 2015 .

[5]  A. Hayter,et al.  Recursive confidence band construction for an unknown distribution function , 2015, Biometrical journal. Biometrische Zeitschrift.

[6]  Katherine Baicker,et al.  Medicaid Increases Emergency-Department Use: Evidence from Oregon's Health Insurance Experiment , 2014, Science.

[7]  A. Belloni,et al.  Program evaluation and causal inference with high-dimensional data , 2013, 1311.2645.

[8]  A. Zaslavsky,et al.  The Oregon experiment--effects of Medicaid on clinical outcomes. , 2013, The New England journal of medicine.

[9]  Dominik Wied,et al.  Misspecification Testing in a Class of Conditional Distributional Models , 2013 .

[10]  Guang Cheng,et al.  The cluster bootstrap consistency in generalized estimating equations , 2013, J. Multivar. Anal..

[11]  Victor Chernozhukov,et al.  Conditional Quantile Processes Based on Series or Many Regressors , 2011, Journal of Econometrics.

[12]  Marc G. Genton,et al.  Asymptotic properties of sample quantiles of discrete distributions , 2011 .

[13]  Markus Frölich,et al.  Quantile Treatment Effects in the Regression Discontinuity Design: Process Results and Gini Coefficient , 2010, SSRN Electronic Journal.

[14]  V. Chernozhukov,et al.  Inference on Counterfactual Distributions , 2009, 0904.0951.

[15]  V. Chernozhukov,et al.  Massachusetts Institute of Technology Department of Economics Working Paper Series Improving Point and Interval Estimates of Monotone Functions by Rearrangement Improving Point and Interval Estimates of Monotone Functions by Rearrangement , 2022 .

[16]  R. Randles,et al.  Confidence Intervals for a Discrete Population Median , 2007 .

[17]  H. Frydman,et al.  Discrete Quantile Estimation , 2007 .

[18]  Joshua D. Angrist,et al.  Long-Term Educational Consequences of Secondary School Vouchers: Evidence from Administrative Records in Colombia , 2006 .

[19]  Steven D. Levitt,et al.  Testing for Racial Differences in the Mental Ability of Young Children , 2006 .

[20]  Roger Koenker,et al.  Inference for Quantile Regression , 2005 .

[21]  Victor Chernozhukov,et al.  Quantile Regression Under Misspecification, with an Application to the U.S. Wage Structure , 2004 .

[22]  Donald B. Rubin,et al.  Estimation of Causal Effects via Principal Stratification When Some Outcomes are Truncated by “Death” , 2003 .

[23]  G. Imbens,et al.  Identification and Estimation of Triangular Simultaneous Equations Models without Additivity , 2002 .

[24]  José A.F. Machado,et al.  Quantiles for Counts , 2002 .

[25]  Roger Koenker,et al.  Inference on the Quantile Regression Process , 2000 .

[26]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[27]  F. Peracchi,et al.  The Conditional Distribution of Excess Returns: An Empirical Analysis , 1994 .

[28]  J. Wellner,et al.  Exchangeably Weighted Bootstraps of the General Empirical Process , 1993 .

[29]  R. LePage,et al.  Exploring the Limits of Bootstrap , 1993 .

[30]  C. Gutenbrunner,et al.  Regression Rank Scores and Regression Quantiles , 1992 .

[31]  L. G. Pawlson The Oregon Experiment , 1991, Journal of the American Geriatrics Society.

[32]  J. S. Huang Estimating the variance of the sample median, discrete case , 1991 .

[33]  W. Fuller,et al.  Quantile Estimation with a Complex Survey Design , 1991 .

[34]  John W. Tukey,et al.  Exploratory data analysis , 1977, Addison-Wesley series in behavioral science : quantitative methods.

[35]  E. Lehmann,et al.  Nonparametrics: Statistical Methods Based on Ranks , 1976 .

[36]  Kjell A. Doksum,et al.  Empirical Probability Plots and Statistical Inference for Nonlinear Models in the Two-Sample Case , 1974 .

[37]  James E. Grizzle,et al.  Analysis of Contingency Tables Having Ordered Response Categories , 1972 .

[38]  掛下 伸一,et al.  Non Parametric Estimationについて , 1965 .

[39]  R. Woodruff,et al.  Confidence Intervals for Medians and Other Position Measures , 1952 .

[40]  J. Tukey,et al.  Non-Parametric Estimation. I. Validation of Order Statistics , 1945 .

[41]  A. Kolmogoroff Confidence Limits for an Unknown Distribution Function , 1941 .

[42]  F. Galton On a Proposed Statistical Scale , 1874, Nature.

[43]  Soumendu Sundar Mukherjee,et al.  Weak convergence and empirical processes , 2019 .

[44]  Raghunath Arnab,et al.  Complex Survey Design , 2017 .

[45]  Robert P. Lieli,et al.  Estimation and Inference for Distribution Functions and Quantile Functions in Endogenous Treatment Effect Models∗ , 2015 .

[46]  Stephen G. Donald,et al.  Estimation and inference for distribution functions and quantile functions in treatment effect models , 2014 .

[47]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[48]  Kevin M. Small,et al.  Estimation and Inference , 2013 .

[49]  R. Koenker,et al.  Regression Quantiles , 2007 .

[50]  R. Winkelmann Reforming health care: evidence from quantile regressions for counts. , 2006, Journal of health economics.

[51]  R. Koenker Quantile Regression: Name Index , 2005 .

[52]  M. Sherman,et al.  A comparison between bootstrap methods and generalized estimating equations for correlated outcomes in generalized linear models , 1997 .