Presynaptic calcium stores underlie large-amplitude miniature IPSCs and spontaneous calcium transients

[1]  Acknowledgements , 1992, Experimental Gerontology.

[2]  L. Hood,et al.  Conserved organization of the human and murine T-cell receptor β-gene families , 1988, Nature.

[3]  D. Copenhagen,et al.  Caffeine-Sensitive Calcium Stores Regulate Synaptic Transmission from Retinal Rod Photoreceptors , 1999, The Journal of Neuroscience.

[4]  R. Penner,et al.  Store depletion and calcium influx. , 1997, Physiological reviews.

[5]  Mark J. Wall,et al.  Development of the quantal properties of evoked and spontaneous synaptic currents at a brain synapse , 1998, Nature Neuroscience.

[6]  R. Challiss,et al.  Differential expression and regulation of ryanodine receptor and myo-inositol 1,4,5-trisphosphate receptor Ca2+ release channels in mammalian tissues and cell lines. , 1997, The Biochemical journal.

[7]  P. Allen,et al.  The human cardiac muscle ryanodine receptor-calcium release channel: identification, primary structure and topological analysis. , 1996, The Biochemical journal.

[8]  M. Berridge,et al.  Characterization of Elementary Ca2+ Release Signals in NGF-Differentiated PC12 Cells and Hippocampal Neurons , 1999, Neuron.

[9]  K. Mikoshiba,et al.  Two types of ryanodine receptors in mouse brain: Skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons , 1992, Neuron.

[10]  É. Rousseau,et al.  Structural and functional correlation of the trypsin-digested Ca2+ release channel of skeletal muscle sarcoplasmic reticulum. , 1989, The Journal of biological chemistry.

[11]  J. Hachisuka,et al.  Functional Coupling of Ca2+ Channels to Ryanodine Receptors at Presynaptic Terminals , 2000, The Journal of General Physiology.

[12]  A. Marks,et al.  Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein , 1994, Cell.

[13]  S. Snyder,et al.  Localization of the inositol 1,4,5-trisphosphate receptor in synaptic terminals in the vertebrate retina , 1991, Neuron.

[14]  Yan-Yi Peng Ryanodine-Sensitive Component of Calcium Transients Evoked by Nerve Firing at Presynaptic Nerve Terminals , 1996, The Journal of Neuroscience.

[15]  M. Osanai,et al.  A Ca2+-induced Ca2+ Release Mechanism Involved in Asynchronous Exocytosis at Frog Motor Nerve Terminals , 1998, The Journal of general physiology.

[16]  R. Wong,et al.  GABAA-receptor function in hippocampal cells is maintained by phosphorylation factors. , 1988, Science.

[17]  M. Frerking,et al.  Are some minis multiquantal? , 1997, Journal of neurophysiology.

[18]  Harold P. Erickson,et al.  Purification and reconstitution of the calcium release channel from skeletal muscle , 1988, Nature.

[19]  A. Marty,et al.  Presynaptic Effects of NMDA in Cerebellar Purkinje Cells and Interneurons , 1999, The Journal of Neuroscience.

[20]  H. Erickson,et al.  Structural and functional characterization of the purified cardiac ryanodine receptor-Ca2+ release channel complex. , 1989, The Journal of biological chemistry.

[21]  C. Pouzat,et al.  Somatic Recording of GABAergic Autoreceptor Current in Cerebellar Stellate and Basket Cells , 1999, The Journal of Neuroscience.

[22]  M. Sciancalepore,et al.  Intracellular calcium stores modulate miniature GABA‐mediated synaptic currents in neonatal rat hippocampal neurons , 1998, European Journal of Neuroscience.

[23]  J. Hachisuka,et al.  Functional coupling of Ca(2+) channels to ryanodine receptors at presynaptic terminals. Amplification of exocytosis and plasticity. , 2000, The Journal of general physiology.

[24]  M. Bennett The origin of Gaussian distributions of synaptic potentials , 1995, Progress in Neurobiology.

[25]  A. Marty,et al.  Protein kinase A‐mediated enhancement of miniature IPSC frequency by noradrenaline in rat cerebellar stellate cells. , 1997, The Journal of physiology.

[26]  A. Marty,et al.  Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents , 1991, Neuron.

[27]  E Neher,et al.  Fast scanning and efficient photodetection in a simple two-photon microscope , 1999, Journal of Neuroscience Methods.

[28]  Alain Marty,et al.  Heterogeneity of Functional Synaptic Parameters among Single Release Sites , 1997, Neuron.

[29]  John M. Zempel,et al.  How quickly can GABAA receptors open? , 1994, Neuron.

[30]  A. B. Smith,et al.  Ryanodine‐sensitive calcium stores involved in neurotransmitter release from sympathetic nerve terminals of the guinea‐pig. , 1996, The Journal of physiology.

[31]  John M. Bekkers,et al.  Quantal analysis of synaptic transmission in the central nervous system , 1994, Current Opinion in Neurobiology.

[32]  Christopher W. Ward,et al.  Time Course of Individual Ca2+ Sparks in Frog Skeletal Muscle Recorded at High Time Resolution , 1999, The Journal of general physiology.

[33]  I. Llano,et al.  Spatial heterogeneity of intracellular Ca2+ signals in axons of basket cells from rat cerebellar slices , 1997, The Journal of physiology.

[34]  Christophe Pouzat,et al.  Action potential‐evoked Ca2+ signals and calcium channels in axons of developing rat cerebellar interneurones , 2000, The Journal of physiology.

[35]  S. Redman Quantal analysis of synaptic potentials in neurons of the central nervous system. , 1990, Physiological reviews.

[36]  E Niggli,et al.  Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. , 1999, Annual review of physiology.

[37]  W. Lederer,et al.  Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. , 1993, Science.

[38]  A. Konnerth,et al.  Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells , 1992, Nature.

[39]  I. Llano,et al.  Modulation by K+ channels of action potential‐evoked intracellular Ca2+ concentration rises in rat cerebellar basket cell axons , 1999, The Journal of physiology.

[40]  M. Stern,et al.  Calcium in close quarters: microdomain feedback in excitation-contraction coupling and other cell biological phenomena. , 1997, Annual review of biophysics and biomolecular structure.

[41]  P. Fossier,et al.  Cyclic ADP‐ribose and calcium‐induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia , 1998, The Journal of physiology.

[42]  A. Marty,et al.  Fluctuations of inhibitory postsynaptic currents in Purkinje cells from rat cerebellar slices. , 1996, The Journal of physiology.

[43]  K. Mikoshiba,et al.  Immunohistochemical localization of an inositol 1,4,5-trisphosphate receptor, P400, in neural tissue: studies in developing and adult mouse brain , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[44]  S. Palay,et al.  Cerebellar Cortex: Cytology and Organization , 1974 .

[45]  A. Konnerth,et al.  Synaptic‐ and agonist‐induced excitatory currents of Purkinje cells in rat cerebellar slices. , 1991, The Journal of physiology.

[46]  A. Lai,et al.  Structural and Functional Correlation of the Trypsin-digested Ca 2 + Release Channel of Skeletal Muscle Sarcoplasmic Reticulum * , 2001 .

[47]  S. Snyder,et al.  Differential immunohistochemical localization of inositol 1,4,5- trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  A. Marty,et al.  Calcium-induced calcium release in cerebellar purkinje cells , 1994, Neuron.

[49]  C. Mulle,et al.  Potentiation of GABAergic synaptic transmission by AMPA receptors in mouse cerebellar stellate cells: changes during development , 1998, The Journal of physiology.