Méthode non paramétrique pour l'analyse et la classification des données fonctionnelles(Non-parametric method for analysis and classification of functional data)

Functional data analysis plays an increasingly important role in many public health and biomedical applications. In particular, such statistical methods provide tools for warping, comparing, averaging, and modeling data involving correlated measurements. In this paper, we present a new approach of regression analysis for classification of functional data. First, we analyze functional observations to capture their key spatio-temporal patterns by searching optimal warping and then estimate the regression function. Next, we investigate different standard representations from literature and estimate the appropriate regression model as a density function. Finally, an example of application involving patients with Rheumatoid Arthritis and healthy subjects as a reference group, is presented.

[1]  J. Marron,et al.  Registration of Functional Data Using Fisher-Rao Metric , 2011, 1103.3817.

[2]  E. Masry Nonparametric regression estimation for dependent functional data: asymptotic normality , 2005 .

[3]  John S Webster,et al.  High-quality controlled trials on preventing episodes of back problems: systematic literature review in working-age adults. , 2009, The spine journal : official journal of the North American Spine Society.

[4]  H. Müller,et al.  Functional Convex Averaging and Synchronization for Time-Warped Random Curves , 2004 .

[5]  J. Ramsay,et al.  Curve registration , 2018, Oxford Handbooks Online.

[6]  T. Gasser,et al.  Self‐modelling warping functions , 2004 .

[7]  T. Auton Applied Functional Data Analysis: Methods and Case Studies , 2004 .

[8]  Pierre Baldi,et al.  Assessing the accuracy of prediction algorithms for classification: an overview , 2000, Bioinform..

[9]  P. Vieu,et al.  NONPARAMETRIC REGRESSION ON FUNCTIONAL DATA: INFERENCE AND PRACTICAL ASPECTS , 2007 .

[10]  Z. Q. John Lu,et al.  Nonparametric Functional Data Analysis: Theory And Practice , 2007, Technometrics.

[11]  J. Ramsay,et al.  Combining Registration and Fitting for Functional Models , 2008 .

[12]  H. Müller,et al.  Pairwise curve synchronization for functional data , 2008 .

[13]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[14]  Joseph P. Romano,et al.  The stationary bootstrap , 1994 .

[15]  Frédéric Ferraty,et al.  Dimension fractale et estimation de la régression dans des espaces vectoriels semi-normés , 2000 .

[16]  Frederick Wolfe,et al.  Rheumatoid arthritis , 2010, The Lancet.

[17]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[18]  J. D. Tucker Functional Component Analysis and Regression Using Elastic Methods , 2014 .

[19]  Gareth M. James Curve alignment by moments , 2007, 0712.1425.

[20]  Naâmane Laı¨b Kernel estimates of the mean and the volatility functions in a nonlinear autoregressive model with ARCH errors , 2005 .

[21]  L. Tran Density estimation for time series by histograms , 1994 .

[22]  Frédéric Ferraty,et al.  Nonparametric models for functional data, with application in regression, time series prediction and curve discrimination , 2004 .

[23]  Anuj Srivastava,et al.  An elastic functional data analysis framework for preoperative evaluation of patients with Rheumatoid Arthritis , 2016, 2016 IEEE Winter Conference on Applications of Computer Vision (WACV).

[24]  Richard Wells,et al.  A systematic exploration of distal arm muscle activity and perceived exertion while applying external forces and moments , 2008, Ergonomics.